Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
к модулям / Дыхание / Дыхание.doc
Скачиваний:
115
Добавлен:
14.03.2015
Размер:
5.03 Mб
Скачать

21.2. Легочная вентиляция

Легочные объемы и емкости

Вентиляция легких зависит от глубины дыхания (дыхательного объема) и частоты дыхательных движений. Оба этих параметра могут варьировать в зависимости от потребностей организма.

Легочные объемы. В покое дыхательный объем мал по сравнению с общим объемом воздуха в легких. Таким образом, человек может как вдохнуть, так и выдохнуть большой дополнительный объем воздуха. Однако даже при самом глубоком выдохе в альвеолах и воздухоносных путях легких остается некоторое количество воздуха. Для того чтобы количественно описать все эти взаимоотношения, общий легочный объем делят на несколько компонентов [1]; при этом под емкостью понимают совокупность двух или более компонентов (рис. 21.8).

1. Дыхательный объем – количество воздуха, которое человек вдыхает и выдыхает при спокойном дыхании.

2. Резервный объем вдоха – количество воздуха, которое человек может дополнительно вдохнуть после нормального вдоха.

3. Резервный объем выдача–количество воздуха, которое человек может дополнительно выдохнуть после спокойного выдоха.

4. Остаточный объем – количество воздуха, остающееся в легких после максимального выдоха.

5. Жизненная емкость легких –наибольшее количество воздуха, которое можно выдохнуть после максимального вдоха. Равно сумме 1, 2 и 3.

 

 

Рис. 21.8. Легочные объемы и емкости. Величина жизненной емкости легких и остаточный объем (в правой части рисунка) зависят от пола и возраста

 

6. Емкость вдоха–максимальное количество воздуха, которое можно вдохнуть после спокойного выдоха. Равно сумме 1 и 2.

7. Функциональная остаточная емкость–количество воздуха, остающееся в легких после спокойного выдоха. Равно сумме 3 и 4.

8. Общая емкость легких – количество воздуха, содержащееся в легких на высоте максимального вдоха. Равно сумме 4 и 5. Из всех этих величин наибольшее значение, кроме дыхательного объема, имеют жизненная емкость легких и функциональная остаточная емкость.

Жизненная емкость легких. Жизненная емкость легких (ЖЕЛ) является показателем подвижности легких и грудной клетки. Несмотря на название, она не отражает параметров дыхания в реальных («жизненных») условиях, так как даже при самых высоких потребностях, предъявляемых организмом к дыхательной системе, глубина дыхания никогда не достигает максимального из возможных значений.

С практической точки зрения нецелесообразно устанавливать «единую» норму для ЖЕЛ, так как эта величина зависит от ряда факторов, в частности от возраста, пола, размеров и положения тела и степени тренированности.

Как видно из рис. 21.9, жизненная емкость легких с возрастом (особенно после 40 лет) уменьшается. Это связано со снижением эластичности легких и подвижности грудной клетки. У женщин ЖЕЛ в среднем на 25% меньше, чем у мужчин. Совершенно очевидно, что ЖЕЛ зависит от роста, так как величина грудной клетки

пропорциональна остальным размерам тела. У молодых людей ЖЕЛ можно вычислить с помощью следующего эмпирического уравнения [33]:

ЖЕЛ (л) = 2,5 х рост (м). (1)

 

Таким образом, у мужчин ростом 180 см жизненная емкость легких будет составлять 4,5 л. ЖЕЛ зависит от положения тела: в вертикальном положении она несколько больше, чем в горизонтальном (это связано с тем, что в вертикальном положении в легких содержится меньше крови). Наконец, жизненная емкость легких зависит от степени тренированности. У людей, занимающихся такими видами спорта, где необходима выносливость, ЖЕЛ значительно выше, чем у нетренированных людей. Она особенно велика у пловцов и гребцов (до 8 л), так как у этих спортсменов сильно развиты вспомогательные дыхательные мышцы (большие и малые грудные). Определение жизненной емкости легких имеет значение главным образом для диагностики.

Функциональная остаточная емкость. Физиологическая роль функциональной остаточной емкости (ФОЕ) состоит в том, что благодаря наличию этой емкости в альвеолярном пространстве сглаживаются колебания концентраций O2 и СO2, обусловленные различиями в их содержании во вдыхаемом и выдыхаемом воздухе. Если бы атмосферный воздух поступал непосредственно в альвеолы, не смешиваясь с воздухом, уже содержащимся в легких, то содержание O2 и СO2 в альвеолах претерпевало бы

 

Рис. 21.9. Кривые зависимости общей и жизненной емкости легких и остаточного объема от возраста для людей среднего роста

 

колебания в соответствии с фазами дыхательного цикла. Однако этого не происходит: вдыхаемый воздух смешивается с воздухом, содержащимся в легких, и, поскольку ФОЕ в покое в несколько раз больше дыхательного объема, изменения состава альвеолярного воздуха относительно невелики.

Величина ФОЕ, равная сумме остаточного объема и резервного объема выдоха, зависит от ряда факторов. В среднем у молодых мужчин в горизонтальном положении она составляет 2,4 л, а у пожилых–3,4 л [8]. У женщин ФОЕ примерно на 25% меньше.

Измерение легочных объемов

Объемы вдыхаемого и выдыхаемого воздуха можно непосредственно измерить при помощи спирометра или пневмотахографа. Что касается остаточного объема и функциональной остаточной емкости, то их можно определить лишь косвенно.

Спирометрия. Спирометрами называют приборы, способные вмещать различные количества воздуха при постоянном давлении (рис. 21.11). Наиболее распространен водный спирометр. Этот прибор представляет собой цилиндр, помещенный кверху дном в резервуар с водой. Воздух, попавший в этот цилиндр, не сообщается с внешней средой. Цилиндр уравновешен противовесом. Воздухоносные пути исследуемого соединяют посредством широкой трубки, снабженной загубником, с пространством внутри цилиндра. Во время выдоха объем воздуха в цилиндре увеличивается, и он всплывает; при вдохе цилиндр погружается. Эти изменения объема могут быть измерены при помощи откалиброванной шкалы или зарегистрированы посредством писчика на барабане кимографа (в последнем случае получают так называемую спирограмму).

Пневмотахография. Если нужно исследовать дыхание в течение длительного времени, то значительно удобнее пользоваться так называемыми спирометрами открытого типа. С их помощью регистрируют не сами дыхательные объемы, а объемную скорость воздушной струи (рис. 21.10). Для этого используют пневмотахографы– приборы, основной частью которых служит широкая трубка с малым аэродинамическим сопротивлением. При прохождении воздуха через трубку между ее началом и концом создается небольшая разность давлений, которую можно зарегистрировать при помощи манометрических датчиков. Эта разность давлений прямо пропорциональна объемной скорости воздушной струи, т. е. количеству воздуха, проходящего через поперечное сечение трубки в единицу времени. Кривая изменений этой объемной скорости называется пневмотахограммой. На основе пневмотахограммы, представляющей собой запись dV/dt, путем интегрирования можно получить искомый объем воздуха V:

 

V=∫ΔV/ΔtΔt

 

 

В большинстве пневмотахографов имеется электронный интегрирующий блок, поэтому одновременно с пневмотахограммой непосредственно записывается кривая дыхательных объемов (спирограмма).

Измерение функциональной остаточной емкости (ФОЕ).

Поскольку ФОЕ–что количество воздуха, остающееся в легких в конце выдоха, ее можно измерить только непрямыми методами. Принцип таких методов заключается в том, что либо в легкие вводят инородный газ типа гелия (метод разведения), либо вымывают содержащийся в альвеолярном воздухе азот, заставляя испытуемого дышать чистым кислородом (метод вымывания). И в том и в другом случае искомый объем вычисляют, исходя из конечной концентрации газа [2].

Рис. 21.10. Принцип действия пневмотахографа. Разность давлений между двумя концами трубки, обладающей определенным аэродинамическим сопротивлением и соединенной с загубником, пропорциональна объемной скорости тока воздуха V. Кривая изменений этой скорости называется пневмотахограммой, а кривая изменений интеграла этой скорости во времени, т.е. объема дыхания, представляет собой спирограмму

 

Рис. 21.11. Принцип определения функциональной остаточной емкости по методу разведения гелия. Вверху–аппаратура и дыхательная система исследуемого в исходном состоянии; гелий (красные точки) находится только в спирометре, где содержание его составляет 10 об.%. Внизу– полное и равномерное распределение гелия между легкими (функциональная остаточная емкость) и спирометром после окончания исследования;

концентрация гелия равна 5 об.%

 

На рис. 21.11 проиллюстрирован метод разведения гелия. Спирометр закрытого типа заполняют газовой смесью. Пусть общий объем смеси равен 3 л, а объемы O2 и He—2,7 и 0,3 л соответственно. При этом исходное содержание (фракция) гелия FHe1 составит 0,1 мл на 1л смеси. После спокойного выдоха испытуемый начинает дышать из спирометра, и в результате молекулы гелия равномерно распределяются между объемом легких, равном ФОЕ, и объемом спирометра Vсп. Гелий очень медленно диффундирует через ткани, и переходом его из альвеол в кровь можно пренебречь. Через несколько минут, когда содержание гелия в легких и спирометре выравнивается, измеряют это содержание (FHe2) при помощи специальных приборов. Предположим, что в нашем случае оно составляет 0,05 мл Не на 1 мл смеси. При вычислении ФОЕ исходят из закона сохранения вещества: общее количество гелия, равное произведению объема V и концентрации F, должно быть одинаковым в исходном состоянии и после перемешивания:

Vсп • FHe1 =Vсп+ ФОЕ• FHe2 (2)

Подставляя в это уравнение приведенные выше данные, можно рассчитать ФОЕ:

 

 

 

ФОЕ = Vсп • (FHe1FHe2)/ FHe2= 3•(0.1–0.05)/0.05 = 3 л. (3)

 

При использовании метода вымывания азота испытуемый после спокойного выдоха в течение нескольких минут дышит чистым кислородом. Выдыхаемый воздух поступает в спирометр, и вместе с ним в спирометр переходят молекулы азота, содержащегося в легких. Зная объем выдыхаемого воздуха, начальное содержание N2; в легких и конечное содержание N2 в спирометре, можно вычислить ФОЕ, используя уравнение, аналогичное (3).

При практическом применении этих методов необходимо вносить некоторые поправки [2, 34]. Кроме того, недостатком обоих методов является то, что у больных с неравномерной вентиляцией некоторых участков легких для полного разведения или вымывания газов требуется очень большой период времени. В связи с этим в последнее время получило широкое распространение измерение ФОЕ при помощи интегрального плетизмографа.

Анатомическое и функциональное мертвое пространство

Анатомическое мертвое пространство. Анатомическим мертвым пространством называют объем воздухоносных путей, потому что в них не происходит газообмена. Это пространство включает носовую и ротовую полости, глотку, гортань, трахею, бронхи и бронхиолы. Объем мертвого пространства зависит от роста и положения тела. Приближенно можно считать, что у сидящего человека объем мертвого пространства (в миллилитрах) равен удвоенной массе тела (в килограммах). Таким образом, у взрослых он равен около 150 мл. При глубоком дыхании он возрастает, так как при расправлении грудной клетки расширяются и бронхи с бронхиолами.

Измерение объема мертвого пространства. Экспираторный (дыхательный) объем (Vд) состоит из двух компонентов – объема воздуха, поступающего из мертвого пространства (Vмп), и объема воздуха из альвеолярного пространства (Vа) Показатели, относящиеся к альвеолярному воздуху, обозначают также с помощью прописной буквы (А) в нижнем индексе, чтобы отличить их от аналогичных показателей артериальной крови (см. Дж. Уэст «Физиология дыхания. Основы» .М.: Мир, 1988).

Vд = Vмп + Vа (4)

Для изучения функции легких важно измерить оба этих компонента отдельно. Как и для определения функциональной остаточной емкости, здесь используют непрямые методы. Они основаны на том, что содержание дыхательных газов (O2 и СO2 ) в воздухе из мертвого и из альвеолярного пространства различно. Содержание газов в воздухе мертвого пространства аналогично таковому в воздухе, поступившем при вдохе (инспирации) (Fи).

Содержание же газов в воздухе из альвеолярного пространства такое же, как и в самой альвеолярной газовой смеси (Fa). Если выразить парциальный объем газа в виде произведения общего объема газовой смеси V и концентрации этого газа F, то для любого дыхательного газа будет справедливо равенство

Объем газа в выдыхаемом воздухе =

Объем газа в воздухе из мертвого пространства =

Объем газа в воздухе из альвеолярного пространства

 

Vд Fэ = Vмп Fи + VаFа (5)

Подставляя выражение для Vа из уравнения (4) и сделав преобразования, получаем

Vмп/ Vл= (Fэ – Fа)/ (Fи – Fа) (6)

Это равенство, называемое уравнением Бора, справедливо для любого дыхательного газа. Однако для СO2 его можно упростить, так как содержание этого газа во вдыхаемом воздухе Fи co2 близко к нулю

 

Vмп/ Vд=(Fаco2 – Fэ co2)/ Fа co2 (7)

 

Отношение объема мертвого пространства к экспираторному объему можно вычислить с помощью уравнений (6) и (7). Значения содержания газов для фракций, представленных в правой части уравнения, можно определить путем газового анализа (при определении газов в альвеолярном воздухе возникают некоторые трудности). Пусть газовый анализ дал следующие величины: Fаco2= 0,056 мл СO2 и Fэ co2 = 0,04 мл СO2 ; на 1 мл смеси. Тогда Vмп/Vд = 0,3, т. е. объем мертвого пространства составляет 30% экспираторного объема.

Функциональное мертвое пространство. Под функциональным (физиологическим) мертвым пространством понимают все те участки дыхательной системы, в которых не происходит газообмена. К функциональному мертвому пространству в отличие от анатомического относятся не только воздухоносные пути, но также и те альвеолы, которые вентилируются, но не перфузируются кровью. В таких альвеолах газообмен невозможен, хотя их вентиляция и происходит. В здоровых легких количество подобных альвеол невелико, поэтому в норме объемы анатомического и функционального мертвого пространства практически одинаковы. Однако при некоторых нарушениях функции легких, когда легкие вентилируются и снабжаются кровью неравномерно, объем второго может оказаться значительно больше объема первого.

Измерение вентиляции

Минутный объем дыхания. Минутный объем дыхания, т. е. объем воздуха, вдыхаемого (или выдыхаемого) за 1 мин, равен по определению произведению дыхательного объема и частоты дыхательных движений. Экспираторный объем обычно меньше инспираторного, так как поглощение O2 превышает величину выделения СO2 (дыхательный коэффициент меньше 1. Для большей точности следует различать инспираторный и экспираторный минутные объемы дыхания. При расчетах вентиляции принято исходить из экспираторных объемов, помечаемых «э». Экспираторный минутный объем дыхания Vэ, составляет

Vэ= Vaf (8)

(точка над символом V, означает, что речь идет об «объеме за единицу времени», но не о производной; Va–экспираторный дыхательный объем; f–частота дыхательных движений).

Частота дыхательных движений у взрослого человека в покое в среднем равна 14/мин. Она может претерпевать значительные колебания (от 10 до 18 за 1 мин). Частота дыхательных движений выше у детей (20–30/мин); у грудных детей она составляет 30–40/мин, а у новорожденных– 40–50/мин [4, 8].

Из уравнения (8) следует, что у взрослого человека при дыхательном объеме 0,5 л и частоте дыханий 14/мин минутный объем дыхания равен 7 л/мин. При физической нагрузке в соответствии с увеличением потребности в кислороде повышается и минутный объем дыхания, достигая в условиях максимальной нагрузки 120 л/мин. Хотя минутный объем дыхания дает некоторую информацию о вентиляции легких, он ни в коей мере не определяет эффективность дыхания. Определяющим фактором служит та часть минутного объема дыхания, которая поступает в альвеолы и участвует в газообмене.

Альвеолярная вентиляция и вентиляция мертвого пространства. Часть минутного объема дыхания Vэ, достигающая альвеол, называется альвеолярной вентиляцией Va; остальная его часть составляет вентиляцию мертвого пространства Vмл

 

Vэ= Va+ Vмл (9)

Вентиляция любого отдела равна произведению объема воздуха, проходящего через этот отдел при каждом дыхательном цикле, и частоты дыхательных движений (V = V • f). Приведем значения параметров, определяющих общую вентиляцию легких у здорового взрослого человека в покое. Дыхательный объем V, состоит на 70% из альвеолярного объема Vа и на 30% из объема мертвого пространства Vмл. Следовательно, если Vэ= 500 мл, то

Va = 350 мл, a Vмл =150 мл. Если частота дыхательных движений равна 14/мин, то общая вентиляция легких составит 7 л/мин, альвеолярная вентиляция – 5 л/мин, а вентиляция мертвого пространства–2 л/м.

Альвеолярная вентиляция служит показателем эффективности дыхания в целом. Именно от этой величины зависит газовый состав, поддерживаемый в альвеолярном пространстве. Что касается минутного объема, то он лишь в незначительной степени отражает эффективность вентиляции легких. Так, если минутный объем дыхания нормальный (7 л/мин), но дыхание частое и поверхностное (V, = 0,2 л, f = 35/мин), то вентилироваться будет главным образом мертвое пространство, в которое воздух поступает раньше, чем в альвеолярное; в этом случае вдыхаемый воздух почти не будет достигать альвеол. Такое дыхание иногда наблюдается при циркуляторном шоке и представляет собой крайне опасное состояние. Поскольку объем мертвого пространства постоянен, альвеолярная вентиляция тем больше, чем глубже дыхание.

Искусственное дыхание

Остановка дыхания. Остановка дыхания независимо от вызвавшей ее причины смертельно опасна. С момента остановки дыхания и кровообращения человек находится в состоянии клинической смерти. Как правило, уже через 5–10 мин недостаток O2 и накопление СO2 приводят к необратимым повреждениям клеток жизненно важных органов, в результате чего наступает биологическая смерть. Если за этот короткий срок провести реанимационные мероприятия, то человека можно спасти [40].

К нарушению дыхания могут привести самые разные причины, в том числе закупорка дыхательных путей, повреждение грудной клетки, резкое нарушение газообмена и угнетение дыхательных центров вследствие повреждения головного мозга или отравления. В течение некоторого времени после внезапной остановки дыхания кровообращение еще сохраняется: пульс на сонной артерии определяется в течение 3–5 мин после последнего вдоха. В случае же внезапной остановки сердца дыхательные движения прекращаются уже через 30–60 с.

Обеспечение проходимости дыхательных путей. У человека в бессознательном состоянии утрачиваются защитные рефлексы, благодаря которым в норме воздухоносные пути свободны. В этих условиях рвота или носовое либо горловое кровотечение может привести к закупорке дыхательных путей (трахеи и бронхов). Поэтому для восстановления дыхания в первую очередь необходимо быстро очистить рот и глотку. Однако даже без этих осложнений воздухоносные пути человека, лежащего в бессознательном состоянии на спине, могут быть перекрыты языком в результате западения нижней челюсти. Чтобы предупредить перекрывание воздухоносных путей языком, запрокидывают голову больного и смещают его нижнюю челюсть кпереди.

Искусственное дыхание методом вдувания. Для проведения искусственного дыхания без помощи специальных устройств наиболее эффективен способ, при котором реаниматор вдувает воздух в нос или рот пострадавшего, т. е. непосредственно в его дыхательные пути (рис. 21.12).

При дыхании «рот в нос» реаниматор кладет ладонь на лоб пострадавшего в области границы роста волос и запрокидывает его голову. Второй рукой реаниматор выдвигает нижнюю челюсть пострадавшего и закрывает ему рот, надавливая большим пальцем на губы. Сделав глубокий вдох, реаниматор плотно приникает ртом к носу пострадавшего и производит инсуфляцию (вдувание воздуха в дыхательные пути). При этом грудная клетка пострадавшего должна приподняться. Затем реаниматор освобождает нос пострадавшего, и происходит пассивный выдох под действием силы тяжести грудной клетки и эластической тяги легких. При этом следует следить за тем, чтобы грудная клетка возвращалась в исходное положение.

При дыхании «рот в рот» реаниматор и пострадавший занимают то же положение: одна ладонь реаниматора лежит на лбу больного, другая–под его нижней челюстью. Реаниматор приникает ртом ко рту пострадавшего, закрывая при этом своей щекой его нос. Можно также

Рис. 21.12. Искусственное дыхание по способу, «рот в нос»

 

сдавить ноздри пострадавшего при помощи большого и указательного пальцев руки, лежащей на лбу. При этом способе искусственного дыхания также следует следить за движениями грудной клетки при инсуфляции и выдохе.

Какой бы способ искусственного дыхания ни использовался, прежде всего необходимо произвести в быстром темпе 5–10 инсуфляции, с тем чтобы как можно быстрее ликвидировать недостаток O2 и избыток СO2 в тканях. После этого инсуфляции следует производить с интервалом 5 с. При соблюдении этих правил насыщение артериальной крови пострадавшего кислородом почти постоянно превышает 90% [40].

Искусственное дыхание при помощи специальных устройств. Существует простое приспособление, при помощи которого (если оно находится под рукой) можно производить искусственное дыхание. Оно состоит из маски, герметично накладываемой на лицо больного, клапана и мешка, который вручную сжимается, а затем расправляется. При наличии баллона с кислородом его можно присоединить к этому устройству, для того чтобы повысить содержание O2 во вдыхаемом воздухе.

При широко используемом в настоящее время ингаляционном наркозе воздух из дыхательного аппарата поступает в легкие через эндотрахеальную трубку. В этом случае можно подавать воздух в легкие при повышенном давлении, и тогда вдох будет происходить в результате раздувания легких, а выдох–пассивно. Можно также управлять дыханием, создавая колебания давления, чтобы оно было попеременно выше и ниже атмосферного (при этом среднее давление должно быть равно атмосферному). Поскольку отрицательное давление в грудной полости способствует возврату венозной крови к сердцу, предпочтительнее применять искусственное дыхание в режиме изменяющегося давления.

Применение дыхательных насосов или ручных дыхательных мешков необходимо при операциях с использованием миорелаксантов, устраняющих рефлекторное напряжение мышц. Эти вещества «выключают» и дыхательные мышцы, поэтому вентиляция легких возможна лишь за счет искусственного дыхания.

В случае если у больного имеется хроническое нарушение внешнего дыхания (например, при детском спинальном параличе), вентиляцию легких можно поддерживать с помощью так называемого боксового респиратора («железное легкое»). При этом туловище больного, находящееся в горизонтальном положении, помещают в камеру, оставляя свободной лишь голову. Для инициации вдоха давление в камере понижают, чтобы внутригрудное давление стало выше, чем давление во внешней среде.