Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции Общие понятия математики.doc
Скачиваний:
63
Добавлен:
14.03.2015
Размер:
825.34 Кб
Скачать

§ 2. Способы задания множеств

Множество считают заданным, если о любом объекте можно сказать, принадлежит он этому множеству или не принадлежит.

Множество можно задать, перечислив все его элементы. Запись С = {а, б, в, г} обозначает, что множество С содержит элементы а, б, в, г.

Каждый элемент входит в множество только один раз. Например, множество различных букв в слове «математика» запишется так: {м, а, т, е, и, к}.

Данный способ применим для конечных множеств, которые содержат небольшое число элементов.

Иногда, используя данный способ, можно задать и бесконечное множество. Например, множество натуральных чисел может быть представлено в виде: N = {1, 2, 3, 4, ...}. Такой способ записи возможен лишь тогда, когда из записанной части множества видно, что скрывается под многоточием.

Другой способ задания множеств состоит в следующем: указывают характеристическое свойство его элементов. Характеристическое свойство – это такое свойство, которым обладает каждый элемент, принадлежащий множеству, и не обладает ни один элемент, который ему не принадлежит.

Случается, что одно и то же множество можно задать, указав различные характеристические свойства его элементов. Например, множество двузначных чисел, делящихся на 11 и множество натуральных чисел первой сотни, записанных двумя одинаковыми цифрами, содержат одни и те же элементы.

При данном способе задания множество может быть записано так: в фигурных скобках пишут сначала обозначение элемента, затем проводят вертикальную черту, после которой записывают свойство, которым обладают элементы данного множества. Например, множество А натуральных чисел, меньших 5, запишется так: А = {ххN, х < 5}.

§ 3. Отношения между множествами. Графическая иллюстрация множеств

Определение. Если множества А и В имеют общие элементы, т.е. элементы, принадлежащие одновременно множествам А и В, то говорят, что эти множества пересекаются.

Например, множества А = {1, 2, 3, 4} и В = {0, 3, 5} пересекаются, т.к. имеют общий элемент 3.

На диаграмме пересекающиеся множества изображают следующим образом:

А В

Определение. Множества А и В не пересекаются, если не имеют общих элементов.

Множества А = {1, 2, 3, 4} и В = {0, 8, 5} не пересекаются.

Если множества не пересекаются, то их изображают следующим образом:

А В

Определение. Множества А и В называются равными, если они состоят из одних и тех же элементов. Обозначают: А = В.

Например, множества А = {1, 2, 3} и В = {2, 3, 1} равны, т.к. состоят из одинаковых элементов. Таким образом, множество не изменится, если переставить его элементы. С понятием равных множеств связано следующее положение: одно и то же множество может быть задано с помощью различных характеристических свойств.

Определение. Множество В называется подмножеством множества А, если каждый элемент множества В принадлежит множеству А (обозначают В А).

Согласно данному определению, каждое множество является подмножеством самого себя. Кроме этого считают, что пустое множество есть подмножество любого множества. Само множество и пустое множество называют несобственными подмножествами; все остальные подмножества множества А, если они существуют, – собственные подмножества.

Например, множество А = {1, 2, 3} имеет шесть собственных подмножеств А1 = {1}, А2 = {2}, А3 = {3}, А4 = {1, 2}, А5 = {1, 3}, А6 = {2, 3} и два несобственных подмножества А7 = {1, 2, 3} и А8 = .

Доказано, что если множество состоит из п элементов, то у него 2п различных подмножеств.

Если В А и А В, то А = В. Отсюда вытекает один из способов доказательства равенства множеств: если доказано, что любой элемент из множества А является элементом множества В и, в свою очередь, любой элемент из множества В является элементом множества А, то делают вывод, что А = В.

Часто случается, что все множества, рассматриваемые в задаче, являются подмножествами одного и того же множества. Такое множество называют универсальным (обозначают I).

Условимся изображать универсальное множество прямоугольником, а его подмножества – кругами в этом прямоугольнике.

Описанный способ изображения множеств носит названия кругов Эйлера или диаграмм Венна. Мы будем подобные изображения называть диаграммами Эйлера-Венна.