
- •Курс лекций по математике
- •§ 2. Законы алгебры высказываний
- •Контрольные вопросы
- •Глава 2. Элементы теории множеств § 1. Понятие множества. Элемент множества. Пустое множество
- •§ 2. Способы задания множеств
- •§ 3. Отношения между множествами. Графическая иллюстрация множеств
- •§ 4. Операции над множествами
- •§ 5. Законы операций над множествами
- •Контрольные вопросы
- •§ 6. Число элементов объединения двух и трех конечных множеств
- •§ 7. Понятие разбиения множества на классы
- •Контрольные вопросы
- •Глава 3. Соответствия §1. Упорядоченная пара. Декартово произведение двух множеств
- •§ 2. Соответствие между элементами множеств. Способы задания соответствий
- •§ 3. Взаимно однозначное соответствие
- •§ 4. Равномощные множества. Счетные и несчетные множества
- •Контрольные вопросы
- •§ 5. Определение числовой функции. Способы задания функций. Свойства функций
- •§ 6. Виды функций
- •§ 7. Обратная функция
- •Контрольные вопросы
- •Глава 4. Отношения на множестве § 1. Понятие отношения. Способы задания отношений
- •§ 2. Свойства отношений
- •§ 3. Отношение эквивалентности. Связь отношения эквивалентности с разбиением множества на классы
- •§ 4. Отношение порядка. Упорядоченные множества
- •Контрольные вопросы
- •Глава 5. Предикаты и теоремы § 1. Предикаты и операции над ними
- •Контрольные вопросы
- •§ 2. Высказывания с кванторами и их отрицания
- •Контрольные вопросы
- •§ 3. Отношение следование и равносильности между предложениями. Необходимое и достаточное условие
- •Контрольные вопросы
- •§ 4. Строение и виды теорем
- •Контрольные вопросы
- •Глава 6. Математические понятия § 1. Объем и содержание понятия. Отношения между понятиями
- •§ 2. Определение понятия. Требования к определению понятия
- •Контрольные вопросы
- •Глава 7. Математические доказательства § 1. Умозаключения и их виды
- •§ 2. Схемы дедуктивных умозаключений
- •§ 3. Проверка правильности умозаключений
- •§ 4. Способы математического доказательства
- •Контрольные вопросы
- •Глава 1. Высказывания 2
§ 2. Законы алгебры высказываний
Коммутативные законы
А В В А
А В В А
Ассоциативные законы
А (В С) (А В) С
А (В С) (А В) С
Дистрибутивные законы
А (В С) (А В) (А С)
А (В С) (А В) (А С)
А А А
А А А
А И А
А И И
А Л Л
А Л А
А
Л
А
И
8.
9.
А В
В
А В
Докажем
равенство 10: А
В
В.
Для этого составим таблицу истинности.
А |
В |
А В |
|
|
И |
И |
И |
Л |
И |
И |
Л |
Л |
Л |
Л |
Л |
И |
И |
И |
И |
Л |
Л |
И |
И |
И |
Т.к. формулы принимают одинаковые значения истинности при всех наборах значений истинности переменных, то они тождественно равны.
Аналогично с помощью таблиц истинности доказываются остальные законы.
С помощью таблиц истинности и законов алгебры высказываний можно доказать равносильность составных формул высказываний (смотри рекомендации по решению задач).
Контрольные вопросы
Какие предложения называются высказываниями?
Какие высказывания называют элементарными, а какие – составными?
Сформулируйте определения отрицания, конъюнкции, дизъюнкции, импликации, эквиваленции высказываний и составьте для данных операций над высказываниями таблицы истинности.
Какие высказывания называют равносильными?
Каким законам подчиняются операции над высказываниями?
Глава 2. Элементы теории множеств § 1. Понятие множества. Элемент множества. Пустое множество
Множество – основное понятие математики и поэтому не определяется через другие.
Обычно под множеством понимают совокупность предметов, объединенных по общему признаку. Так, можно говорить о множестве студентов в группе, множестве букв русского алфавита и т.д. В повседневной жизни вместо слова «множество» употребляют слова «набор», «коллекция», «группа» и т.д. Множества принято обозначать прописными буквами латинского алфавита: А, В, С, ..., Z.
Для числовых множеств в математике приняты специальные обозначения:
N – множество натуральных чисел;
N0 – множество целых неотрицательных чисел;
Z – множество целых чисел;
Q – множество рациональных чисел;
R – множество действительных чисел.
Объекты, из которых образовано множество, называют его элементами. Например, сентябрь является элементом множества месяцев в году, число 5 – элемент множества натуральных чисел. Элементы множества принято обозначать строчными буквами латинского алфавита. Элементами множества могут быть множества. Так можно говорить о множестве групп института. Элементы этого множества – группы, являющиеся в свою очередь множествами студентов.
Связь между множеством и его элементом выражают при помощи слова «принадлежит». Высказывание «Элемент а принадлежит множеству А» записывают так: а А, причем эта запись может быть прочитана иначе: «а – элемент множества А», «множество А содержит элемент а». Высказывание «Элемент а не принадлежит множеству А» записывают так: а А (иначе: «а не является элементом множества А», «множество А не содержит элемент а»).
Если в обыденной речи слово «множество» связывают с большим числом предметов, то в математике этого не требуется. Множество может содержать один элемент, не содержать ни одного элемента.
Множество, не содержащее ни одного элемента, называют пустым и обозначают символом . Существует лишь одно пустое множество. Примерами пустого множества могут служить множество людей на Солнце, множество натуральных корней уравнения х + 8 = 0.
Множества могут быть конечными и бесконечными.
Множество называется конечным, если существует натуральное число п, такое, что все элементы множества можно перенумеровать числами от 1 до п. в противном случае множество называют бесконечным. Примером конечного множества является множество цифр, бесконечного – множество натуральных чисел.