Скачиваний:
353
Добавлен:
12.03.2015
Размер:
1.6 Mб
Скачать

2.4. Сопротивление проводника. Явление сверхпроводимости.

Способность вещества проводить ток характеризуется его удельной проводи­мостью, либо удельным сопротивлением . Их величина определяется химичес­кой природой проводника и условиями, в частности температурой, при которой он находится. Для большинства металлов  растет с температурой приблизительно по линейному закону: ,- удельное сопротивление при 0С, t - температура по шкале Цельсия,  - темпе­ра­турный коэффициент сопротивления близкий к 1/273 К-1 при не очень низких темпе­ратурах. Так как R, то , где- сопротивление при 0С. Преобра­зовав две последние формулы, можно записать и, где Т – температура по Кельвину. На основе температурной зависимости сопротивления метал­лов созда­ны термометры сопротивления - термисторы, позволяющие определять температуру с точно­стью до 0.003 К.

При низких температурах нарушается линейность зависимости сопротивления металлов от температуры и при температуре 0 К наблюдается остаточное сопротивление Rост. Величина Rост зави­сит от чистоты материала и наличия в нем механических напряжений. Лишь у иде­ально чистого металла с идеально правильной кристаллической решеткой Rост 0 при Т0 (пунктирная часть кривой).

Кроме этого, в 1911 г. Г.Каммерлинг-Оннес обнару­жил, что при Тк = 4.1К сопротивление ртути скачкообразно уменьшается практически до нуля. Эта температура была названа критической, а наблюдаемое яв­ление - сверхпроводимостью. Впо­следствии этот эффект был обнаружен у целого ряда дру­гих металлов (Ti, Al, Pb, Zn, V и др.) и их спла­вов в интервале температур 0.14-20 К. Вещества в сверхпроводящем состоянии обладают необычными свойствами. Однажды возбужденный в них ток может длительно существовать без источника тока. Переход в сверхпроводящее состояние сопровождается скачкообразным изме­нением теплоемкости, теплопроводности, маг­нитных свойств вещества. Выясни­лось, что внешнее магнитное поле не проникает в толщи­ну сверхпроводника, т.е. магнитная индукция внутри него всегда равна нулю. Явление сверхпроводимости объясняется на основе квантовой теории. К настоящему времени это явление обнаружено также у ряда композиционных веществ (например, соединений металлов и диэлектриков), при этом критическая температура доходит до температуры сжижения азота, что позволяет достаточно экономично использовать явление высокотемпературной сверхпроводимости в инженерной практике. Данное явление позволяет создавать: системы передачи без потерь электрического тока по проводам из таких веществ, системы для накопления электроэнергии, мощные электромагниты, магнитные подвески для различных целей.

2.5. Работа и мощность тока. Закон Джоуля-Ленца.

Определим работу, совершаемую постоянным током в проводнике, имеющем сопротивление R и находящемся под напряжением . Так как ток пред­ставляет собой перемещение зарядаq под действием поля, то работу тока можно оп­ределить по формуле . Учитывая формулуи закон Ома,получим , или, или, гдеt - время протекания тока. Поделив обе части равенства на t, получим выраже­ния для мощности постоянного тока N

, ,. Работа тока в системе единиц СИ измеряется в доулях (Дж), а мощность - в ваттах (Вт). На практике применяются также внесистемные единицы работы тока: ватт-час (Втч) и киловатт-час (кВтч). 1Втч - работа тока мощностью 1Вт в течение одного часа. 1Втч=3.6103 Дж.

Опыт показывает, что ток всегда вызывает некоторое нагревание проводника. Нагревание обусловлено тем, что кинетическая энергия движущихся по проводнику электронов (т.е. энергия тока) при каждом их столкновении с ионами металличе­ской решетки переходит в теплоту Q. Если ток идет по неподвижному металличе­скому проводнику, то вся работа тока расходуется на его нагревание и, следуя за­кону сох­ранения энергии, можно записать . Данные соотношения выражаютзакон Джоуля-Ленца. Впервые этот закон был установлен опытным путем Д.Джоулем в 1843 г. и независимо от него Э.Ленцем в 1844 г. Применение теплового действия тока в технике началось с открытия в 1873 г. русским инженером А.Ладыгиным лампы накаливания.

На тепловом действии тока основан целый ряд электрических приборов и ус­та­новок: тепловые электроизмерительные приборы, электропечи, электросварочная аппаратура, бытовые электронагревательные приборы - чайники, кипятильники, утюги. В пищевой промышленности широко применяется метод электроконтактного нагрева, заключающийся в том, что электрический ток, проходя через продукт, об­ла­дающий определенным сопротивлением, вызывает его равномерное нагревание. На­пример, для производства колбасных изделий через дозатор фарш поступает в формы, торцевые стенки которых служат электродами. При такой обработке обес­пе­чивается равномерность нагрева по всему объему продукта, возможность под­держа­ния определенного температурного режима, наивысшая биологическая цен­ность из­делия, наименьшие длительность процесса и расход энергии.

Определим удельную тепловую мощность тока , т.е. количество теплоты, вы­деляющееся в единице объема за единицу времени. Выделим в проводнике элемен­тарный цилиндрический объем dV с поперечным сечением dS и длиной dl параллель­ной направлению тока, и сопротивлением ,. По закону Джоуля-Ленца, за времяdt в этом объеме выделится теплота . Тогдаи, используя закон Ома для плотности токаи соотно­шение,получим . Эти соотношения выражаютзакон Джоуля-Ленца в дифференциальной форме.

Соседние файлы в папке ЭЛЕКТРИЧ