
- •Технические средства контроля в системах управления технологическими процессами Учебное пособие
- •Технические средства контроля в системах управления технологическими процессами
- •1. Контроль давления
- •1.1. Определение понятия «давление», и соотношение между единицами давления
- •Соотношение между единицами давления
- •1.2. Классификация приборов для измерения давления по виду измеряемого давления
- •1.3. Классификация приборов для измерения давления по принципу действия
- •1.4. Классификация пружинных приборов для измерения давления по типу чувствительного элемента
- •1.5. Понятие «поверка» рабочего измерительного прибора
- •1.6. Классификация погрешностей измерения
- •1.7. Абсолютная, относительная, приведённая погрешности измерительного прибора. Вариация показаний прибора
- •1.8. Класс точности приборов
- •1.9. Устройство, принцип действия и область применения приборов с упругими чувствительными элементами
- •1.10. Возможные источники систематических погрешностей приборов с упругим чувствительным элементом
- •1.11. Устройство и принцип действия грузопоршневого манометра мп –60
- •1.12. Устройство и принцип действия датчика давления «Сапфир-22 ди»
- •2. Контроль температуры
- •2.1. Термоэлектрические преобразователи
- •2.1.1. Принцип измерения температуры термоэлектрическим методом. Конструкция термопары
- •2.1.2. Типы стандартных термопар и диапазоны изменяемых температур для каждого их вида
- •2.1.3. Термопреобразователи с унифицированным токовым выходным сигналом (тхау)
- •2.1.4. Применение термоэлектродных проводов и их свойства
- •2.1.5. Измерительные приборы применяемые комплексно с термопарами, для измерения температуры
- •2.1.6. Принцип действия магнитоэлектрического милливольтметра
- •2.1.7. Схема, исключающая влияние отклонений температуры свободного спая термопары на пока-зания милливольтметра, электрон-ного потенциометра
- •2.1.8. Сущность нулевого (компенсационного) метода измерения тэдс
- •2.1.9. Назначение всех элементов электронной функциональной схемы автоматического потенциометра
- •2.2. Термопреобразователи сопротивления
- •2.2.1. Принцип работы термопреобразователя сопротивления. Диапазон измеряемых температур для каждого типа термопреобразователя сопротивления
- •2.2.2. Устройство платиновых и медных термопреобразователей сопротивления
- •2.2.3. Отличие терморезисторов от металлических термопреобразователей сопротивления
- •2.2.4. Градуировка термопреобразователя сопротивления. Градуировки технических платиновых и медных термопреобразователей сопротивления
- •2.2.5. Измерительные приборы, применяемые в комплекте с термопреобразователями сопротивления
- •2.2.6. Уравновешенные мосты
- •2.2.7. Преимущества трехпроводной схемы подсоединения термопреобразователя сопротивления
- •2.2.8. Автоматический уравновешенный мост. Назначение основных элементов схемы. Принцип работы прибора
- •2.2.9. Неуравновешенные мосты
- •2.2.10. Термопреобразователи с унифицированным токовым выходным сигналом. (тспу, тсму)
- •2.3. Манометрические термометры
- •3. Контроль расхода
- •3.1.Физический смысл понятий «расход» и «количество»
- •3.2. Приборы для измерения расхода и количества вещества
- •3.3. Основные принципы измерения расхода
- •3.4. Классификация приборов для измерения расхода и количества
- •3.5. Градуировочная характеристика средств измерения
- •3.6. Сущность измерения расхода по методу переменного перепада давления
- •3.6.1. Типы сужающих устройств, регламентированные рд 50-213-80
- •3.7. Дифманометр типа дм
- •3.8. Источники возможных погрешностей комплекта – расходомера при измерении расхода методом переменного перепада давлений
- •3.9. Расходомеры обтекания. Ротаметры
- •3.9.1. Устройство и принцип действия промышленного поплавкового расходомера типа рэ
- •Внутри диафрагмы переме-щается конусный поплавок 3, жестко насаженный на шток 4.
- •3.10. Кориолисовы (массовые) расходомеры
- •3.11.Вихревые расходомеры
- •4. Контроль уровня
- •4.1. Методы измерения уровня жидкости, применяемые в химической промышленности
- •4.2. Принцип работы емкостного уровнемера
- •4.3. Методы измерения сыпучих сред
- •4.4. Радарные измерители уровня
- •4.5. Метод направленного электромагнитного излучения
- •Библиографический список
3.9.1. Устройство и принцип действия промышленного поплавкового расходомера типа рэ
На
(рис.10) приведена принципиальная схема
ротаметра с электрической
дифференциально-трансформаторной
передачей показаний на расстояние [1].
Измерительная часть ротаметра выполнена
из цилиндрического металлического
корпуса 1 (сталь
Х18Н9Т) с
диафрагмой 2.
Внутри диафрагмы переме-щается конусный поплавок 3, жестко насаженный на шток 4.
Н
Рис.
10. Схема ротаметра с
дифференциально-трансформаторным
преобразователем: 1–корпус;
2–диафрагма; 3–поплавок; 4–шток;
5–сердечник; 6–разделительная трубка
В другой модели рота-метра поплавок перемещается внутри конической трубки. Бес-шкальные ротаметры работают в комплекте с показывающим или регистрирующим вторичным дифференциально-трансформатор-
ным прибором.
Ротаметры рассчитаны на рабочее давление до 6,27 МН/м2 (62 кгс/см2). Пределы измерения (в расчете на воду) от 0,7*10-5 до 0,44*10-2 м3/с. Минимальные расходы, измеряемые ротаметром, составляют (15-20)% верхнего предела измерения. Основная погрешность комплекта (преобразователя и вторичного прибора) (2,5-3)% верхнего предела измерения.
Для измерения расхода во взрывоопасных и пожароопасных условиях применяются ротаметры с пневматической дистанционной передачей.
3.10. Кориолисовы (массовые) расходомеры
Кориолисовы расходомеры, как правило, используют U-образную трубку малого сопротивления в качестве сенсора (датчики расхода) и их работа основана на втором законе Ньютона [9]. Внутри корпуса сенсора находится сенсорная трубка, которая приводится в движение управляющей электромагнитной катушкой, расположенной в центре изгиба трубки, и вибрирует подобно камертону (без каких-либо искривлений в случае отсутствия расхода).
При движении измеряемой среды через сенсор проявляется физическое явление, известное как эффект Кориолиса, воздействующая со стороны жидкости на трубку (рис.11).
Эта сила направлена против движения трубки, приданного ей задающей катушкой. То есть когда трубка движется вверх во время половины ее собственного цикла, то для жидкости, втекающей внутрь, сила Кориолиса направлена вниз. Как только жидкость проходит изгиб трубки, направление силы меняется на противоположное. Таким образом, во входной половине трубки сила, действующая со стороны жидкости, препятствует смещению трубки, а во входной – способствует. Это является причиной того, что сенсорная трубка изгибается. Когда во второй фазе вибрационного цикла трубка движетсявниз, направление изгиба меняется на противоположное.
Рис.11. Силы действующие на первичный преобразователь кориолисова расходомера.
Сила Кориолиса и, следовательно, величина изгиба сенсорной трубки прямо пропорциональны массовому расходу жидкости. Электромагнитные детекторы измеряют фазовый сдвиг при движении противоположных сторон сенсорной трубки.
Когда расхода измеряемой среды нет, то не возникает и изгиб трубки, в результате чего отсутствует временная разница между двумя сигналами детекторов.
Наряду с наиболее распространенной U-образной формой конструкция сенсора может быть также прямотрубной, в форме двойной петли и т.д.
Кориолисовы расходомеры массы (рис.12) вполне подходят для одновременного дозирования и для точных измерений в широком диапазоне расхода.
Электро-магнитный
датчик В Электро-магнитный
датчик А Устройство
вывода сигнала
Рис.
12. Схема кориолисова
расходомера.