
- •Образования и науки Российской Федерации
- •Введение
- •1. Общие вопросы
- •1.1. Основные свойства резин как конструкционного материала
- •1.2. Структура и направления развития резиновой промышленности
- •1.3. Основные компоненты и рецептура резиновых смесей
- •1.4. Физико-механические испытания каучуков, резиновых смесей и резин
- •1.4.1. Методы испытаний каучуков и резиновых смесей
- •1.4.2. Методы испытаний резин
- •1.4.2.1.Определение свойств резин при статическом нагружении
- •1.4.2.2. Определение свойств резин при динамическом нагружении
- •1.4.2.3. Определение сопротивления резин истиранию
- •1.4.2.4. Определение прочности связи между резиной и резиной, резиной и другими материалами
- •1.4.2.5. Определение сопротивления резин действию внешних сред
- •2. Каучуки, применяемые в производстве резиновых изделий
- •2.1. Натуральный каучук
- •2.2. Синтетические изопреновые каучуки
- •2.3. Бутадиеновые каучуки
- •2.4. Бутилкаучук
- •2.5. Этиленпропиленовые каучуки
- •2.6. Бутадиен-стирольные каучуки
- •2.7. Бутадиен-нитрильные каучуки
- •2.8. Хлоропреновые каучуки
- •3. Вулканизующие системы
- •3.1. Основные закономерности процесса вулканизации каучуков различной природы
- •3.2.1. Взаимодействие серы с каучуком в отсутствие ускорителей
- •3.2.2. Вулканизация серой в присутствии ускорителей
- •3.2.2.1. Ускорители – производные дитиокарбаминовых кислот
- •3.2.2.2. Ускорители группы тиазолов
- •3.2.2.3. Ускорители аминного типа
- •3.2.3. Активаторы ускорителей серной вулканизации
- •3.2.4. Замедлители преждевременной вулканизации
- •3.2.5. Серные вулканизующие системы для высокотемпературной вулканизации
- •3.3 Бессерные вулканизующие системы для ненасыщенных каучуков
- •3.4. Вулканизующие системы для насыщенных каучуков
- •3.5. Вулканизующие системы для каучуков с функциональными группами
- •4. Наполнители
- •4.1. Активные наполнители
- •4.1.1. Технический углерод
- •4.1.1.1.Способы классификации технического углерода
- •4.1.1.2. Усиливающее действие технического углерода
- •4.1.1.3. Выбор марок технического углерода.
- •4.1.2. Другие типы активных наполнителей
- •4.2. Неактивные наполнители
- •5. Пластификаторы и мягчители
- •6. Защитные добавки
- •Ингредиенты специального назначения
- •Технологические добавки
- •9. Армирующие материалы
- •Библиографический список
- •Содержание
- •Охотина Наталья Антониновна
- •Тексты лекций
- •420015, Казань, к.Маркса, 68
3.5. Вулканизующие системы для каучуков с функциональными группами
В резиновой промышленности применяется ряд насыщенных или ненасыщенных каучуков (хлоропреновые, карбоксилатные, уретановые, полисульфидные, фторкаучуки), которые имеют в своем составе функциональные группы. Эти каучуки можно вулканизовать традиционными системами для ненасыщенных или насыщенных каучуков, причем получаются материалы с обычными свойствами. Для улучшения свойств резин или придания им новых свойств каучуки с функциональными группами вулканизуют по функциональным группам. В этих случаях выбор вулканизующего агента определяется природой функциональной группы, т.е. вулканизующий агент должен иметь природу, противоположную природе функциональной группы (например, кислота – основание и наоборот) и должен быть бифункциональным для образования поперечных связей.
Вулканизация хлоропреновых каучуков. В хлоропреновых каучуках до 80% звеньев имеют 1,4-транс-конфигурацию, когда двойная связь почти полностью экранируется атомом хлора с большим радиусом и становится малоактивной во всех химических взаимодействиях, в том числе и при вулканизации серой (по этой причине серная вулканизация хлоропреновых каучуков протекает крайне медленно). Поэтому для их вулканизации используют имеющиеся в наличии хлорные функциональные группы кислотного характера. Наилучшие результаты получаются при использовании оксидов металлов, и вулканизующая система обычно состоит из 5 мас.ч. оксида цинка и 4 мас.ч. оксида магния. В качестве активатора такой системы используется канифоль, поскольку соли канифоли и оксидов имеют более высокую растворимость в каучуке.
При вулканизации оксидами металлов в образовании поперечных связей участвуют атомы хлора 1,2-звеньев. В этих звеньях происходит внутримолекулярная перегруппировка, в результате которой атом хлора мигрирует в боковое звено, становится подвижным и легко взаимодействует с оксидом Znс образованием кислой соли:
~ CH2–C ~ → ~ CH=C ~ + ZnO → ~ CH=C ~
Cl CH=CH2 CH2CH2 Cl CH2CH2 O Zn Cl.
Соли затем участвуют в образовании поперечных связей эфирного типа С-О-С:
2 ~ CH=C ~ → ~ CH=C ~ + ZnO + ZnCl2
CH2CH2 O Zn Cl CH2CH2 –O– CH2CH2
~ C=CH ~
Наряду с эфирными связями за счет координационных свойств иона цинка образуются и координационные поперечные связи.
При термической обработке любых хлорполимеров происходит дегидрохлорирование основной цепи, т.е. отщепление хлористого водорода, что резко ухудшает свойства резин. HCl при взаимодействии с ZnO дает ZnCl2, который является сильнейшим катализатором дегидрохлорирования основной цепи, поэтому для связывания HCl, предотвращения образования ZnCl2и дегидрохлорирования в систему вводят оксид магния.
В вулканизатах хлоропреновых каучуков содержится небольшое количество серных поперечных связей, так как при синтезе этих каучуков сера используется в качестве регулятора молекулярной массы.
Вулканизации карбоксилатных каучуков.Карбоксилатные каучуки имеют кислотную функциональную группу СООН, поэтому для вулканизации можно использовать полиэфиры, полиамины, но вулканизаты с лучшими свойствами получаютсяпри применении оксидов и гидроксидов металлов.
Так, в случае оксида магния уже на стадии приготовления резиновой смеси начинается солеобразование, причем возникают и средние и основные соли:
2 ~~~~~~~ + MgO → ~~~~~~~ ~~~~~~~ +Н2О
С(О)ОН C(O) О- Mg-О (О)С
~~~~~~~ + MgO → ~~~~~~~
С(О)ОН С(О)О- Mg-ОН
Основные соли легко образуют комплексы за счет водородных связей. Формирование поперечных связей типа солевых и водородных комплексов сопровождается упорядочением структуры вулканизата вплоть до образования на отдельных участках солевых кристаллов. За счет упорядочения структуры возрастает механическая прочность вулканизатов (до 40 МПа) даже в отсутствие наполнителя. Высокая прочность вулканизатов с солевыми и координационными связями объясняется не только регулярностью структуры, но и легкостью перегруппировки поперечных связей при деформировании.
Основными недостатками металлооксидных вулканизатов является высокая склонность резиновых смесей к подвулканизации на стадии смешения и недостаточная теплостойкость вулканизатов (комплексы легко распадаются при повышении температуры). Поэтому такой способ вулканизации в основном используется для латексных смесей с целью получения высокопрочных пленок.
Для вулканизации фторкаучуковнаряду с пероксидными используют системы на основе диаминов, для вулканизацииуретановых каучуков– система на основе диизоцианатов,полисульфидные каучуки– тиоколы – вулканизуют преимущественно неорганическими пероксидами (MnO2,PbO2и др.).
Таким образом, существующие способы вулканизации каучуков различной природы позволяют формировать пространственную сетку с различными типами поперечных связей: углерод-углеродными, моно-, ди- или полисульфидными, эфирными, водородными, солевыми, координационными, гетероатомными. Это создает возможность управления свойствами резин, в первую очередь их устойчивостью к температурным и динамическим воздействиям.