Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТОЗОС.doc
Скачиваний:
124
Добавлен:
12.03.2015
Размер:
376.32 Кб
Скачать
    1. Характеристики меди

Медь — элемент побочной подгруппы первой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Обозначается символом  Cu  (лат. Cuprum). Простое вещество медь — это пластичный переходный металл  золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). C давних пор широко применяется человеком. Медь — один из первых металлов, широко освоенных человеком из-за сравнительной доступности для получения из руды и малой температуры плавления. В древности применялась в основном в виде сплава с оловом. Латинское название меди Cuprum (древн. Aes cuprium, Aes cyprium) произошло от названия острова Кипр, где уже в III тысячелетии до н. э. существовали медные рудники и производилась выплавка меди. Медь встречается в природе как в соединениях, так и в самородном виде. Промышленное значение имеют халькопирит CuFeS2, также известный как медный колчедан, халькозин Cu2S и борнит Cu5FeS4. Вместе с ними встречаются и другие минералы меди:  ковеллин CuS,  куприт Cu2O, а зурит Cu3(CO3)2(OH)2, малахит  Cu2CO3(OH)2. Иногда медь встречается в самородном виде, масса отдельных скоплений может достигать 400 тонн[2]. Сульфиды меди образуются в основном в среднетемпературных гидротермальных жилах. Также нередко встречаются месторождения меди в осадочных породах — медистые песчаники и сланцы. Наиболее известные из месторождений такого типа Удокан в Читинской области, Джезказган в Казахстане, меденосный пояс Центральной Африки и Мансфельд в Германии. Другие самые богатые месторождения меди находятся в Чили (Эскондида и Кольяуси) и США (Моренси)[3]. Большая часть медной руды добывается открытым способом. Содержание меди в руде составляет от 0,3 до 1,0 %.

Физические свойства: медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет. Медь образует кубическую гранецентрированную решётку,  пространственная группа F m3m,  a = 0,36150 нм, Z = 4. Медь обладает высокой тепло-[4] и электропроводностью (занимает второе место по электропроводности после серебра). Удельная электропроводность при 20 °C 55,5-58 МСм/м[5]. Медь имеет относительно большой температурный коэффициент сопротивления: 0,4 %/°С. Имеет два стабильных изотопа — 63Cu и 65Cu, и несколько радиоактивных изотопов. Самый долгоживущий из них, 64Cu, имеет период полураспада 12,7 ч и два варианта распада с различными продуктами. Существует ряд сплавов меди: латуни — с цинком, бронзы — с оловом и другими элементами, мельхиор — с никелем, баббиты — со свинцом и другие [4].

    1. Способы очистки сточных вод от тяжелых металлов

Гальванические производства и производства печатных плат являются одними из наиболее водоемких. Предприятия этих отраслей являются интенсивнейшими генераторами загрязнения сточных вод, что обусловливает необходимость резкого сокращения промышленных сточных вод, поступающих в водные объекты. По концентрации содержащихся в них растворенных веществ все сточные воды гальванических производств можно разделить на две основные группы: малоконцентрированные, образующиеся в различных промывочных операциях; высококонцентрированные, представляющие собой отработанные технологические растворы и электролиты. По химическому составу их подразделяют на три основные группы: содержащие цианистые соединения (цианиды); содержащие соединения шестивалентного хрома (хроматы); содержащие свободные минеральные кислоты или щелочи, а также соли тяжелых металлов.

Очистка сточных вод проводится с целью устранения вредных и опасных свойств, которые могут привести к пагубным последствиям в окружающей среде. Применение различных технологий очистки направлено на нейтрализацию, обезвреживание и утилизацию ценных компонентов. Таким образом, выбор технологии очистки и оборудования зависит в первую очередь от свойств сточных вод и их отклонений от свойств природных вод. Выбор метода очистки стоков зависит от вредных факторов, которыми обладает сточная вода. В качестве вредных факторов могут выступать не только токсические вещества – ионы тяжёлых металлов, нефтепродукты, ПАВ, но и такие обобщённые показатели, как агрессивность среды, общая жёсткость выше допустимой, содержание аммонийного азота, окисляемость и др. Неорганические и токсичные загрязнения, а также органические. Сточные воды третьего типа образуются в процессах гальванической обработки поверхностей, производстве печатных плат приборостроительной и радиоэлектронной промышленности и прочих технологических процессах. В составе данных сточных вод присутствуют неорганические: щелочи, кислоты, катионы тяжелых и цветных металлов, и органические поверхностно-активные вещества, нефтепродукты, красители и другие вещества.

Анализ литературных источников позволил выявить несколько классов вредных факторов и основные методы, способных обезвреживать эти классы: (табл 1.6.).

Табл.1.6. Типы загрязняющих веществ в сточных водах и методы очистки

Тип загрязняющих веществ

Группа загрязнений

Методы очистки сточных вод

Грубодисперсные взвешенные вещества

Взвешенные вещества с размером частиц более 0,5 мм

Просеивание

Первичное отстаивание без реагентов

Фильтрация

Грубодисперсные эмульгированные частицы

Капельные загрязнения, органические вещества, не смешивающиеся с водой

Гравитационная сепарация

Фильтрация

Флотация

Электрофлотация

Микрочастицы

Взвешенные вещества с размером частиц более 0,01 мм

Фильтрация

Коагуляция

Флокуляция

Напорная флотация

Стабильные эмульсии

Нефтепродукты в количестве > 5 мг/л, вещества, экстрагируемые серным эфиром

Тонкослойная седиментация

Напорная флотация

Электрофлотация

Коллоидные частицы

Размер частиц от 0,1 до 10 мкм

 

Микрофильтрация

Электрофлотация

Агрессивность среды

pH, общая щелочность, общая кислотность

Нейтрализация

Масла

Концентрация масел более 10 мг/л

Гравитационная сепарация

Флотация

Электрофлотация

Коагуляция + озонирование

Ионы тяжелых металлов

Концентрации Cu2+, Zn2+, Ni2+, Feобщ, Al+3, Cd2+ 5 - 500 мг/л

Электрофлотация

Реагентный + отстаивание

Электродиализ

Электрокоагуляция

Концентрации Cu2+, Zn2+, Ni2+, Feобщ, Al+3, Cd2+ 0,5 - 5 мг/л

Ультрафильтрация

Ионный обмен

Цианиды

Концентрация CN- 1 - 10 мг/л

Химическое окисление

Электрофлотация

Электрохимическое окисление

Хром (VI)

Концентрация Cr6+ 1 - 100 мг/л

Химическое восстановление + Электрофлотация

Электрохимическое восстановление

Электрокоагуляция

Хром (III)

Концентрация Cr3+ 5 - 100 мг/л

Электрофлотация

Осаждение +Фильтрация

Концентрация Cr3+ 0,5 - 5 мг/л

Ионный обмен

Ультрафильтрация

Сульфаты

Концентрация SO42- > 2000 мг/л

Реагентный + отстаивание+Фильтрация

Вакуумное выпаривание

Концентрация SO42- < 2000 мг/л

Нанофильтрация

Обратный осмос

Хлориды

Концентрация Cl- > 300 мг/л

Обратный осмос

Вакуумное выпаривание

Электродиализ

Общее солесодержание

 

Нанофильтрация

Обратный осмос

Вакуумное выпаривание

Электродиализ

Поверхностно-активные вещества

Анионные и неионогенные ПАВ

Флотация

Электрофлотация

Сорбция на активированном угле

Анионные, катионные и неионогенные ПАВ

Ультрафильтрация

Нанофильтрация

Озонирование

Как видно из представленной таблицы в практике водоочистки от тяжелых металлов используют различные методы - реагентный метод с последующим осаждением нерастворимых соединений, ионообменная очистка, электрохимические методы [5].