Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

khimia

.doc
Скачиваний:
35
Добавлен:
11.03.2015
Размер:
389.12 Кб
Скачать

Стандартные условия — значения температуры и давления, при которых определяются значения различных количественных характеристик веществ, зависящих от давления и температуры. Для обеспечения единообразия представления характеристик в научной и справочной литературе ИЮПАК в 1982 установила следующие стандартные условия:

стандартное давление для газов, жидкостей, и твёрдых тел, равное 105 Па, стандартная температура для газов, равная 273,15 К (0°С), стандартная молярность для растворов, равная 1 моль•л−1.

Скорость химической реакции — изменение количества одного из реагирующих веществ за единицу времени в единице реакционного пространства. Является ключевым понятием химической кинетики. Скорость химической реакции — величина всегда положительная, поэтому, если она определяется по исходному веществу, то полученное значение домножается на−1. v=d[C]/dt.

Закон действующих масс - скорость химической реакции пропорциональна произведению концентраций реагирующих веществ. Для одностадийной гомогенной реакции типа А+В ® продукты реакции этот закон выражается уравнением: v = k cA cB,

где v - скорость реакции; cA и cB - концентрации веществ А и В, моль/л; k - коэффициент пропорциональности, называемый константой скорости реакции. Физический смысл константы скорости реакции k следует из уравнения закона действующих масс: k численно равна скорости реакции, когда концентрации каждого из реагирующих веществ составляют 1 моль/л или их произведение равно единице. Константа скорости реакции зависит от температуры, от природы реагирующих веществ, но не зависит от их концентрации.

Константа скорости реакции - является коэффициентом пропорциональности в кинетическом уравнении. Физический смысл константы скорости реакции k следует из уравнения закона действующих масс: k численно равна скорости реакции, когда концентрации каждого из реагирующих веществ составляют 1 моль/л или их произведение равно единице. Константа скорости реакции зависит от температуры, от природы реагирующих веществ, но не зависит от их концентрации.

Особый тип окислительно-восстановительных реакций - колебательные реакции. Они протекают в довольно сложных реакционных системах, и для таких реакций очень важным фактором оказывается кинетический. В рассматриваемых ниже примерах таких систем возможно протекание ряда последовательных реакций, которые характеризуются различной скоростью. Взаимное наложение нескольких таких реакций, продукты которых могут оказывать каталитическое либо ингибирующее воздействие, проводит к тому, что в реакционной среде поочередно накапливается то один, то другой компонент. В случае интенсивно окрашенных веществ в значительных концентрациях показ колебательных реакций может оказаться в числе самых эффектных демонстрационных опытов лекционного курса.

Правило Вант-Гоффа — эмпирическое правило, позволяющее в первом приближении оценить влияние температуры на скорость химической реакции в небольшом температурном интервале. Вант-Гофф на основании множества экспериментов сформулировал следующее правило: При повышении температуры на каждые 10 градусов константа скорости гомогенной элементарной реакции увеличивается в два — четыре раза. Уравнение, которое описывает это правило следующее:V2=V1T2-T1/10, где V2— скорость реакции при температуре T2, V1 — скорость реакции при температуре T1 , γ— температурный коэффициент реакции (если он равен 2, например, то скорость реакции будет увеличиваться в 2 раза при повышении температуры на 10 градусов). Следует помнить, что правило Вант-Гоффа применимо только для реакций с энергией активации 60-120 кДж/моль в температурном диапазоне 10-400oC. Правилу Вант-Гоффа также не подчиняются реакции, в которых принимают участие громоздкие молекулы, например белки в биологических системах. Температурную зависимость скорости реакции более корректно описывает уравнение Аррениуса. Из уравнения Вант-Гоффа температурный коэффициент вычисляется по формуле:γ= (V2/V1)10/T2-T1.

Энергия активации— минимальное количество энергии, которое требуется сообщить системе (в химии выражается в джоулях на моль), чтобы произошла реакция. Типичное обозначение энергии реакции Ea. В химической модели, известной как Теория активных соударений (ТАС), есть три условия, необходимых для того, чтобы произошла реакция:

Молекулы должны столкнуться. Это важное условие, однако его не достаточно, так как при столкновении не обязательно произойдёт реакция. Молекулы должны обладать необходимой энергией. В процессе химической реакции взаимодействующие молекулы должны пройти через промежуточное состояние, которое может обладать большей энергией. То есть молекулы должны преодолеть энергетический барьер; если этого не произойдёт, реакция не начнётся. Молекулы должны быть правильно ориентированы относительно друг друга. При низкой (для определённой реакции) температуре большинство молекул обладают энергией меньшей, чем энергия активации, и неспособны преодолеть энергетический барьер. Однако в веществе всегда найдутся отдельные молекулы, энергия которых значительно выше средней. Даже при низких температурах большинство реакций продолжают идти. Увеличение температуры позволяет увеличить долю молекул, обладающих достаточной энергией, чтобы преодолеть энергетический барьер. Таким образом повышается скорость реакции.

Ката́лиз — избирательное ускорение одного из возможных термодинамически разрешенных направлений химической реакции под действием катализатора(ов), который многократно вступает в промежуточное химическое взаимодействие с участниками реакции и восстанавливает свой химический состав после каждого цикла промежуточных химических взаимодействий.

Химическое равновесие — состояние химической системы, в котором обратимо протекает одна или несколько химических реакций, причём скорости в каждой паре прямая-обратная реакция равны между собой. Для системы, находящейся в химическом равновесии, концентрации реагентов, температура и другие параметры системы не изменяются со временем. А2 + В2 ⇄ 2AB.

Смещение химического равновесия

Положение химического равновесия зависит от следующих параметров реакции: температуры, давления и концентрации. Влияние, которое оказывают эти факторы на химическую реакцию, подчиняются закономерности, которая была высказана в общем виде в 1885 году французским ученым Ле-Шателье. Факторы влияющие на химическое равновесие: 1) температура. При увеличении температуры химическое равновесие смещается в сторону эндотермической (поглощение) реакции, а при понижении в сторону экзотермической (выделение) реакции. CaCO3=CaO+CO2 -Q t↑ →, t↓ ←, N2+3H2↔2NH3 +Q t↑ ←, t↓ →. 2) давление. При увеличении давления химическое равновесие смещается в сторону меньшего объёма веществ, а при понижении в сторону большего объёма. Этот принцип действует только на газы, т.е. если в реакции участвуют твердые вещества, то они в расчет не берутся. CaCO3=CaO+CO2 P↑ ←, P↓ →, 1моль=1моль+1моль. 3) концентрация исходных веществ и продуктов реакции. При увеличении концентрации одного из исходных веществ химическое равновесие смещается в сторону продуктов реакции, а при увеличении концентрации продуктов реакции-в сторону исходных веществ. S2+2O2=2SO2 [S],[O]↑ →, [SO2]↑ ←. Катализаторы не влияют на смещение химического равновесия!

Конста́нта равнове́сия — величина, определяющая для данной химической реакции соотношение между термодинамическими активностями (либо, в зависимости от условий протекания реакции, парциальными давлениями, концентрациями или фугитивностями) исходных веществ и продуктов в состоянии химического равновесия (в соответствии с законом действующих масс). Зная константу равновесия реакции, можно рассчитать равновесный состав реагирующей смеси, предельный выход продуктов, определить направление протекания реакции.

Принцип Ле Шателье—если на систему, находящуюся в устойчивом равновесии, воздействовать извне, изменяя какое-либо из условий равновесия (температура, давление, концентрация), то в системе усиливаются процессы, направленные на компенсацию внешнего воздействия.

Пове́рхностные явле́ния — совокупность явлений, обусловленных особыми свойствами тонких слоёв вещества на границе соприкосновения фаз. К поверхностным явлениям относятся процессы, происходящие на границе раздела фаз, в межфазном поверхностном слое и возникающие в результате взаимодействия сопряжённых фаз. Поверхностные явления обусловлены тем, что в поверхностных слоях на межфазных границах вследствие различного состава и строения соприкасающихся фаз и соответственно из-за различия в связях поверхностных атомов и молекул со стороны разных фаз существует ненасыщенное поле межатомных, межмолекулярных сил. Вследствие этого атомы и молекулы в поверхностных слоях образуют особую структуру, а вещество принимает особое состояние, отличающееся от его состояния в объеме фаз различными свойствами. Поверхностные явления изучаются коллоидной химией.

Адсорбция— это, в широком смысле, процесс изменения концентрации у поверхности раздела двух фаз, а в более узком и употребительном — это повышение концентрации одного вещества (газ, жидкость) у поверхности другого вещества (жидкость, тв. тело).

Диспе́рсная систе́ма — это образованная из двух или более фаз (тел), которые совершенно или практически не смешиваются и не реагируют друг с другом. Первое из веществ (дисперсная фаза) мелко распределено во втором (дисперсионная среда). Если фаз несколько, их можно отделить друг от друга физическим способом (центрифугировать, сепарировать и т. д.). Обычно дисперсные системы — это коллоидные растворы, золи. К дисперсным системам относят также случай твёрдой дисперсной среды, в которой находится дисперсная фаза.

Классификация дисперсных систем основана на различии в агрегатном состоянии дисперсионной среды и дисперсной фазы. Сочетания трех видов агрегатного состояния позволяют выделить девять видов дисперсных систем. Для краткости записи их принято обозначать дробью, числитель которой указывает на дисперсную фазу, а знаменатель на дисперсионную среду, например для системы «газ в жидкости» принято обозначение Г/Ж.

Обозначение Дисперсная фаза Дисперсионная среда Название и пример

Г/Г Газообразная Газообразная Дисперсная система не образуется

Ж/Г Жидкая Газообразная Аэрозоли: туманы, облака

Т/Г Твёрдая Газообразная Аэрозоли (пыли, дымы), порошки

Г/Ж Газообразная Жидкая Газовые эмульсии и пены

Ж/Ж Жидкая Жидкая Эмульсии: нефть, крем, молоко

Т/Ж Твёрдая Жидкая Суспензии и золи: пульпа, ил, взвесь, паста

Г/Т Газообразная Твёрдая Пористые тела

Ж/Т Жидкая Твёрдая Капиллярные системы: жидкость в пористых телах, грунт, почва

Т/Т Твёрдая Твёрдая Твёрдые гетерогенные системы: сплавы, бетон, ситаллы.

Истинный раствор - это разновидность растворов в котором размеры частиц растворенного вещества предельно малы и сопоставимы с размером частиц растворителя. Раствором называется твердая или жидкая гомогенная система, состоящая из двух или более составных частей. Относительные количества компонентов раствора могут изменяться в широких пределах. Наиболее важный вид растворов в жизни человека - жидкие растворы. Такими растворами являются все жидкости организма. С жидкими растворами усваиваются в системе пищеварения питательные вещества. Всякий раствор состоит из дисперсной фазы, или растворенных веществ и дисперсионной (непрерывной) фазы, или растворителя, т.е. среды, в которой эти вещества равномерно распределены в виде частиц, молекул или ионов. Растворяемые вещества, в зависимости от их способности проходить через частично проницаемую (полупроницаемую, пергаментную) мембрану, разделяют на два типа: кристаллоиды и коллоиды. Растворителем большинства жидких растворов организма является вода. Обычно растворителем считают тот компонент, который в чистом виде существует в таком же агрегатном состоянии, что и полученный раствор. Например, в случае водного раствора соли растворителем является вода. Если же оба компонента до растворения находились в одинаковом агрегатном состоянии (например, спирт и вода), то растворителем считается компонент, находящийся в большем количестве. Свойства любого водного раствора зависят от размера частиц растворенного вещества и от их реакции на действие силы тяжести. По этим признакам различают три типа растворов: истинные растворы, коллоидные растворы и суспензии или эмульсии. В истинных растворах размеры частиц растворенного вещества малы. Они сравнимы с размерами молекул растворителя (воды). Истинный раствор является гомогенной (однородной) системой, практически состоящей из одной фазы. Частицы истинного раствора не разделяются под действием силы тяжести. Истинными растворами организма являются, например, растворы солей, моносахаридов.

Качественная и количественная характеристика растворов. Растворами называются гомогенные системы переменного состава, в которых растворенное вещество находится в виде атомов, ионов или молекул, равномерно окруженных атомами, ионами или молекулами растворителя. Любой раствор состоит по меньшей мере из двух веществ, одно из которых считается растворителем, а другое - растворенным веществом. Растворителем считается компонент, агрегатное состояние которого такое же, как и агрегатное состояние раствора. Деление это довольно условно, а для веществ, смешивающихся в любых соотношениях (вода и ацетон, золото и серебро), лишено смысла. В этом случае растворителем считается компонент, находящийся в растворе в большем количестве. Состав растворов может меняться в довольно широких пределах, в этом растворы сходны с механическими смесями. По другим признакам, таким как однородность, наличие теплового эффекта и окраски растворы сходны с химическими соединениями. Растворы могут существовать в газообразном, жидком или твердом агрегатном состоянии. Воздух, например, можно рассматривать как раствор кислорода и других газов в азоте; морская вода - это водный раствор различных солей в воде. Металлические сплавы относятся к твердым растворам одних металлов в других.

Растворение веществ является следствием взаимодействия частиц растворяемого вещества и растворителя. В начальный момент времени растворение идет с большой скоростью, однако по мере увеличения количества растворенного вещества возрастает скорость обратного процесса - кристаллизации. Кристаллизацией называется выделение вещества из раствора и его осаждение. В какой-то момент скорости растворения и осаждения сравняются и наступит состояние динамического равновесия. Раствор, в котором вещество при данной температуре уже больше не растворяется, или иначе, раствор, находящийся в равновесии с растворяемым веществом, называется насыщенным. Для большинства твердых веществ растворимость в воде увеличивается с повышением температуры. Если раствор, насыщенный при нагревании, осторожно охладить так, чтобы не выделялись кристаллы, то образуется пересыщенный раствор. Пересыщенным называется раствор, в котором при данной температуре содержится большее количество растворенного вещества, чем в насыщенном растворе. Пересыщенный раствор крайне нестабилен и при изменении условий (энергичное встряхивание или внесение активных центров кристаллизации - кристалликов соли, пылинок) образуется насыщенный раствор и кристаллы соли. Раствор, содержащий меньше растворенного вещества, чем насыщенный, называется ненасыщенным раствором.

Растворы электролитов и неэлектролитов. Вещества, распадающиеся на ионы в растворах или расплавах и потому проводящие электрический ток, называются электролитами. Вещества, которые в тех же условиях на ионы не распадаются и электрический ток не проводят, называются неэлектролитами. Одни вещества в растворенном или расплавленном состоянии проводят электрический ток, другие — нет. В этом можно убедиться с помощью прибора, состоящего из угольных электродов, присоединенных проводами к электрической сети. В цепь включена электрическая лампочка, которая показывает присутствие или отсутствие электрического тока в цепи. Если опустить электроды в раствор сахара, то лампочка не загорается. Если же опустить электроды в раствор поваренной соли, то лампочка ярко вспыхнет. Следовательно, сахар (раствор) — неэлектролит, т.к. не проводит электрический ток, а раствор поваренной соли — электролит, т.к. проводит электрический ток. Опытным путем было доказано, что к электролитам относятся кислоты, основания и почти все соли, к неэлектролитам — большинство органических соединений, а также вещества, в молекулах которых имеются только ковалентные неполярные или малополярные связи. Электролиты — проводники второго рода. В растворе или расплаве они распадаются на ионы, благодаря чему и протекает ток. Очевидно, что чем больше ионов в растворе, тем лучше он проводит электрический ток. Чистая вода электрический ток проводит очень плохо. Распад молекул электролита на ионы под воздействием молекул растворителя называется электролитической диссоциацией. Так, хлорид натрия NaCl при растворении в воде полностью распадается на ионы натрия Na+ и хлорид-ионы Сl-. Вода образует ионы водорода Н+ и гидроксид-ионы ОН~ лишь в очень незначительных количествах.

Кроме хорошей электропроводности растворы электролитов обладают более низкими значениями давления пара растворителя и температуры плавления и более высокими температурами кипения по сравнению с соответствующими значениями для чистого растворителя или для раствора неэлектролита в этом же растворителе. Для объяснения этих свойств в 1887 г. шведский ученый С. Аррениус предложил теорию электролитической диссоциации. 1. Электролиты при растворении в воде распадаются (диссоциируют) на ионы — положительные и отрицательные. Ионы находятся в более устойчивых электронных состояниях, чем атомы. Они могут состоять из одного атома — это простые ионы (Na+, Mg2+, Аl3+ и т. д.) — или из нескольких атомов — это сложные ионы (NO-3, SO2-4, PO3-4 и т.д.). Многие ионы окрашены. Например, ион MnO-4 имеет малиновый цвет, ион CrO2-4 — желтый, ионы Na+ и Сl- бесцветны. Само название «ион» в переводе с греческого означает «странствующий». В растворе ионы беспорядочно передвигаются («странствуют») в различных направлениях. 2. При действии электрического тока ионы приобретают направленное движение: положительно заряженные ионы движутся к катоду, отрицательно заряженные — к аноду. Поэтому первые называются катионами, вторые — анионами. Направленное движение ионов происходит в результате притяжения их к противоположно заряженным электродам.

3. Диссоциация — обратимый процесс: параллельно с распадом молекул на ионы (диссоциация) протекает процесс соединения ионов (ассоциация). Поэтому в уравнениях электролитической диссоциации вместо знака равенства ставят знак обратимости. Например, уравнение диссоциации молекулы электролита КА на катион К+ и анион А- в общем виде записывается так: КА К++А- Теория электролитической диссоциации является одной из основных теорий в неорганической химии и полностью согласуется с атомно-молекулярным учением и теорией строения атома.

Тепловой эффект реакции, теплота, выделенная или поглощенная термодинамической системой при протекании в ней химической реакции. Определяется при условии, что система не совершает никакой работы (кроме возможной работы расширения), а температуры реагентов и продуктов равны. Поскольку теплота не является функцией состояния, т.е. при переходе между состояниями зависит от пути перехода, то в общем случае тепловой эффект реакции не может служить характеристикой конкретной реакции. В двух случаях бесконечно малое количество теплоты (элементарная теплота) dQ совпадает с полным дифференциалом функции состояния: при постоянстве объема dQ = = dU (U-внутренняя энергия системы), а при постоянстве давления dQ = dH (H-энтальпия системы).

Зависимость растворения веществ от температуры. Во многих системах сплавов область существования первичных твердых растворов увеличивается при повышении температуры Обычно причина увеличения растворимости заключается в следующем. Существование фазовой смеси при низких температурах объясняется более низким значением свободной энергии фазовой смеси, по сравнению с энергией гомогенной фазы (при данном составе). По мере увеличения температуры все большее значение приобретает энтропия, так как член TS в уравнении F = Е—TS возрастает при повышении температуры. При прочих равных условиях разупорядоченный раствор имеет большую энтропию, чем фазовая смесь (энтропия смеси). Таким образом, при увеличении температуры гомогенные и разупорядоченные растворы становятся более стабильны. Из рис. 3.9, б видно, что граница α-фазы должна изменяться так, как если бы энтропия этой фазы была меньше, чем соседней β-фазы. Тогда, так как dF/dT =—S, кривая свободной энергии β-фазы при увеличении температуры должна переместиться к более низким значениям (по сравнению с кривой свободной энергии α-фазы). При этом наклон общей касательной PQ должен стать больше, а точка Р, определяющая границу α-фазы, переместиться в направлении к А. Такое положение наиболее вероятно при совместном сосуществовании β- и α-фаз, когда β-фаза—разупорядоченный раствор, так как в этом случае она будет иметь энтропию смеси большую, чем энтропия а-фазы. Более общим примером, как будет видно в следующей главе, является случай, когда α- и β-фазы — разупорядоченные растворы В соответственно в твердом и жидком А. Но этот эффект может появляться и в случае, когда β-фаза является вторичным разупорядоченным раствором. Например, в латуни количество первичного раствора цинка в меди уменьшается по мере увеличения температуры выше 450°С. На смену ему в системе появляется разупорядоченный раствор — β-латунь.

Зако́ны Ра́уля. Первый закон Рауля связывает давление насыщенного пара над раствором с его составом; он формулируется следующим образом: Парциальное давление насыщенного пара компонента раствора прямо пропорционально его мольной доле в растворе, причём коэффициент пропорциональности равен давлению насыщенного пара над чистым компонентом. Для бинарного раствора, состоящего из компонентов А и В (компонент А считаем растворителем) удобнее использовать другую формулировку: Относительное понижение парциального давления пара растворителя над раствором не зависит от природы растворённого вещества и равно его мольной доле в растворе. Второй закон Рауля. Тот факт, что давление паров над раствором отличается от давления паров над чистым растворителем, существенно влияет на процессы кристаллизации и кипения. Из первого закона Рауля выводятся два следствия, касающиеся понижения температуры замерзания и повышения температуры кипения растворов, которые в объединённом виде известны как второй закон Рауля. Понижение температуры кристаллизации растворов.

Условием кристаллизации является равенство давления насыщенного пара растворителя над раствором давлению пара над твёрдым растворителем. Поскольку давление пара растворителя над раствором всегда ниже, чем над чистым растворителем, это равенство всегда будет достигаться при температуре более низкой, чем температура замерзания растворителя. Так, океанская вода начинает замерзать при температуре около минус 2 °C.

Разность между температурой кристаллизации растворителя T°fr и температурой начала кристаллизации раствора Tfr есть понижение температуры кристаллизации. Понижение температуры кристаллизации бесконечно разбавленных растворов не зависит от природы растворённого вещества и прямо пропорционально моляльной концентрации раствора. Поскольку по мере кристаллизации растворителя из раствора концентрация последнего возрастает, растворы не имеют определённой температуры замерзания и кристаллизуются в некотором интервале температур. Повышение температуры кипения растворов. Жидкость кипит при той температуре, при которой общее давление насыщенного пара становится равным внешнему давлению. Если растворённое вещество нелетуче (то есть давлением его насыщенных паров над раствором можно пренебречь), то общее давление насыщенного пара над раствором равно парциальному давлению паров растворителя. В этом случае давление насыщенных паров над раствором при любой температуре будет меньше, чем над чистым растворителем, и равенство его внешнему давлению будет достигаться при более высокой температуре. Таким образом, температура кипения раствора нелетучего вещества Tb всегда выше, чем температура кипения чистого растворителя при том же давлении T°b. Повышение температуры кипения бесконечно разбавленных растворов нелетучих веществ не зависит от природы растворённого вещества и прямо пропорционально моляльной концентрации раствора.

Криоскопическая и эбулиоскопическая константы. Криоскопия — метод исследования растворов, в основе которого лежит измерение понижения температуры замерзания раствора по сравнению с температурой замерзания чистого растворителя. Эбулиоскопия— метод исследования растворов, основанный на измерении повышения их температуры кипения по сравнению с чистым растворителем. Криоскопическая и эбулиоскопическая постоянные растворителя, имеющие физический смысл понижения температуры кристаллизации и повышения температуры кипения раствора с концентрацией 1 моль/кг. Для воды они равны 1.86 и 0.52 K·моль−1·кг соответственно. Поскольку одномоляльный раствор не является бесконечно разбавленным, второй закон Рауля для него в общем случае не выполняется, и величины этих констант получают экстраполяцией зависимости из области малых концентраций до m = 1 моль/кг. Для водных растворов в уравнениях второго закона Рауля моляльную концентрацию иногда заменяют молярной. В общем случае такая замена неправомерна, и для растворов, плотность которых отличается от 1 г/см³, может привести к существенным ошибкам. Второй закон Рауля даёт возможность экспериментально определять молекулярные массы соединений, неспособных к диссоциации в данном растворителе; его можно использовать также для определения степени диссоциации электролитов.

Зако́ны Ра́уля в применении к электролитам

Законы Рауля не выполняются для растворов (даже бесконечно разбавленных), которые проводят электрический ток — растворов электролитов. Для учёта этих отклонений Вант-Гофф внёс в приведённые выше уравнения поправку — изотонический коэффициент i, неявно учитывающий диссоциацию молекул растворённого вещества. Неподчинение растворов электролитов законам Рауля и принципу Вант-Гоффа послужили отправной точкой для создания С. А. Аррениусом теории электролитической диссоциации. Зако́н Ге́нри — закон, по которому при постоянной температуре растворимость газа в данной жидкости прямо пропорциональна давлению этого газа над раствором. Закон пригоден лишь для идеальных растворов и невысоких давлений.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]