Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

khimia

.doc
Скачиваний:
34
Добавлен:
11.03.2015
Размер:
389.12 Кб
Скачать

99

Классификация неорганических соединений. К важнейшим неорганическим соединениям относятся оксиды, кислоты, основания и соли. Оксиды- называются соединения двух элементов, одним из которых является кислород. Классификация оксидов. По химическим свойствам оксиды подразделяются на солеобразующие и на несолеобразующие. К несолеобразующим относятся CO, N2O, NO. Солеобразующие оксиды способны вступать во взаимодействие с другими оксидами, кислотами, основаниями, образуя соли. Солеобразующие оксиды делятся на кислотные, основные и амфотерные. Соединяясь с водой прямым или косвенным путем, они образуют соединения, называемые гидратами оксидов: SO2 + H2O → H2SO3. Гидраты кислотных оксидов называются кислотами, а гидраты основных оксидов – основаниями. Кислотными оксидами называют оксиды, взаимодействующие с основными оксидами или основаниями с образованием солей.SO2 + CaO → CaSO3. Следует отметить, что к кислотным оксидам относятся также соединения, образованные металлами, находящимися в высшей степени окисления, например, V2O5, CrO3, MoO3, WO3, MnO3, Mn2O7.Основные оксиды – это такие оксиды, которые вступают во взаимодействие с кислотными оксидами или кислотами, образуя соли.Na2O + CO2 → Na2CO3. Амфотерные оксиды - оксиды, которые в зависимости от условий могут вступать в реакцию солеобразования и с кислотами и с основаниями. Амфотерные соединения образуют элементы главных подгрупп, которые расположены на диагонали Be – Ge и далее на вертикали Ge – Pb. Правее вертикали Ge – Pb амфотерные оксиды образуют мышьяк и сурьма в состоянии окисления +3; левее этой вертикали – галлий и индий. Таким образом, амфотерными являются оксиды главных подгрупп; В остальном в главных подгруппах правее и выше элементов с амфотерными оксидами в Периодической таблице Д.И. Менделеева расположены элементы, имеющие кислотные оксиды, левее и ниже – основные оксиды. Для того, чтобы доказать амфотерные свойства соединения, необходимо привести минимум две реакции с киcлотой и основанием, например:ZnO + 2HCl → ZnCl2 + H2O.ZnO + 2NaOH + H2O → Na2[Zn(OH)4]. Кислоты-соединение, при диссоциации которого образуется только катион водорода Н+. Под кислотным остатком подразумевается та часть кислоты, которая остается после отдачи ионов Н+. Заряд кислотного остатка равен алгебраической сумме степени окисления атомов, входящих в состав кислотного остатка. По составу все кислоты можно классифицировать следующим образом: 1. По числу ионов водорода, способных замещаться на иoны металла с образованием солей. Различают кислоты одноосновные, содержащие один ион водорода (HCl, HNO3, HMnO4), и многоосновные, содержащие два или более ионов водорода (H2SO4, H3PO4).2. По наличию кислорода кислоты подразделяются на кислородсодержащие (HNO3, HClO4) и бескислородные (H2S, HBr).3. По способности присоединять разное количество молекул воды, образуя при этом мета-, орто- и пироформы кислот.

Оксиды элементов VI и VII группы, как правило, присоединяют только одну молекулу воды. Кислотные оксиды элементов III, IV и V (исключение N2O5) могут соединяться с одной, двумя или тремя молекулами воды.4. По способности диссоциировать в водных растворах кислоты делятся на сильные (HCl, HBr, HI, HNO3, H2SO4, HClO4, HMnO4) и слабые - все остальные. Основания-соединение, которое диссоциирует с образованием только аниона гидроксогруппы OH-,По растворимости в воде все основания делятся на растворимые в воде, называемые щелочами, к ним относятся основания щелочных и щелочно-земельных металлов (Li, Na, K, Rb, Cs, Fr, Ca, Sr, Ba, Ra), а также гидроксид аммония NH4OH и все остальные гидроксиды. По способности диссоцировать в водных растворах все основания делятся на сильные и слабые. Сильные основания – гидроксиды щелочных и щелочно-земельных металлов: LiOH, NaOH, KOH, RbOH, CsOH, Ca(OH)2, Ba(OH)2, Sr(OH)2.Все остальные гидроксиды - слабые, их диссоциация протекает ступенчато. Соли-это электролиты при диссоциации которых образуется только катион металла и анион кислотного остатка. Любую соль можно рассматривать как продукт реакции между кислотой и основанием. Соли в зависимости от состава бывают нормальные (средние), кислые и основные. Нормальные соли можно рассматривать, как продукты полного замещения ионов водорода в молекуле кислоты на металл, либо как продукт полного замещения гидроксид – ионов ОН- на ионы кислотного остатка. Нормальная соль CaSO4 может рассматриваться как продукт замещения обоих ионов водорода в молекуле H2SO4 ионом Са2+, либо как продукт замещения обоих гидроксид – ионов в молекуле Ca(OH)2 ионом кислотного остатка. Кислые соли образуются при неполном замещении атомов водорода в молекуле кислоты на металл. Например, кислая соль угольной кислоты NaHCO3. Двухосновные кислоты H2CO3, H2SO3 образуют один тип кислых солей, в состав которых входят однозарядные отрицательные ионы HCO3-, HSO3-.Общее количество кислых солей, которое может быть образовано многоосновными кислотами на единицу меньше чем число атомов водорода в молекуле кислоты. Одноосновные кислоты, такие как HNO3, HCl кислых солей не образуют. Основные соли образуются неполным замещением гидроксид - ионов OH- ионами кислотных остатков. Так, в случае замещения только одного гидроксид иона в молекуле гидроксида магния кислотным остатком NO3- образуется основная соль MgOHNO3. По аналогии с кислыми солями число основных солей образованных основанием на единицу меньше, чем число ионов гидроксогруппы в составе основания.

Мета́ллы— группа элементов, обладающая характерными металлическими свойствами, такими как высокая тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск. Химические свойства металлов.На внешнем электронном уровне у большинства металлов небольшое количество электронов (1-3), поэтому они в большинстве реакций выступают как восстановители. Реакции с простыми веществами. С кислородом реагируют все металлы, кроме золота, платины. Реакция с серебром происходит при высоких температурах, но оксид серебра(II) практически не образуется, так как он термически неустойчив. В зависимости от металла на выходе могут оказаться оксиды, пероксиды, надпероксиды. Чтобы получить из пероксида оксид, пероксид восстанавливают металлом:

Со средними и малоактивными металлами реакция происходит при нагревании. С азотом реагируют только самые активные металлы, при комнатной температуре взаимодействует только литий, образуя нитриды. С серой реагируют все металлы, кроме золота и платины.

Железо взаимодействует с серой при нагревании, образуя сульфид. С водородом реагируют только самые активные металлы, то есть металлы IA и IIA групп кроме Be. Реакции осуществляются при нагревании, при этом образуются гидриды. В реакциях металл выступает как восстановитель, степень окисления водорода −1. С углеродом реагируют только наиболее активные металлы. При этом образуются ацетилениды или метаниды. Ацетилениды при взаимодействии с водой дают ацетилен, метаниды — метан. Легирование — это введение в расплав дополнительных элементов, модифицирующих механические, физические и химические свойства основного материала. Физ.свойства. Все металлы (кроме ртути и, условно, франция) при нормальных условиях находятся в твёрдом состоянии, однако обладают различной твёрдостью.

Немета́ллы — химические элементы с типично неметаллическими свойствами, которые занимают правый верхний угол Периодической системы. Расположение их в главных подгруппах соответствующих периодов следующее. Кроме того к неметаллам относят также водород и гелий. Характерной особенностью неметаллов является большее (по сравнению с металлами) число электронов на внешнем энергетическом уровне их атомов. Это определяет их большую способность к присоединению дополнительных электронов и проявлению более высокой окислительной активности, чем у металлов. Неметаллы имеют высокие значения сродства к электрону, большую электроотрицательность и высокий окислительно-восстановительный потенциал. Благодаря высоким значениям энергии ионизации неметаллов их атомы могут образовывать ковалентные химические связи с атомами других неметаллов и амфотерных элементов. В отличие от преимущественно ионной природы строения соединений типичных металлов, простые неметаллические вещества, а также соединения неметаллов имеют ковалентную природу строения. В свободном виде могут быть газообразные неметаллические простые вещества — фтор, хлор, кислород, азот, водород, инертные газы, твёрдые — иод, астат, сера, селен, теллур, фосфор, мышьяк, углерод, кремний, бор, при комнатной температуре в жидком состоянии существует бром. У некоторых неметаллов наблюдается проявление аллотропии. Так для газообразного кислорода характерны две аллотропных модификации — кислород (O2) и озон (O3), у твёрдого углерода шесть форм — графит, алмаз, карбин, фуллерен, лонсдейлит, углеродные нанотрубки. В молекулярной форме в виде простых веществ в природе встречаются азот, кислород и сера.

Общая характеристика элементов IA и IIA групп. В IA группу входят литий, натрий, калий, рубидий и цезий. Эти элементы называют щелочными элементами. В эту же группу входит искусственно полученный малоизученный радиоактивный (неустойчивый) элемент франций. Иногда в IA группу включают и водород. Таким образом, в эту группу входят элементы каждого из 7 периодов. Во IIA группу входят бериллий, магний, кальций, стронций, барий и радий. Последние четыре элемента имеют групповое название – щелочноземельные элементы. В земной коре наиболее распространены четыре из этих тринадцати элементов: Na (w =2,63 %), K (w = 2,41 %), Mg (w = 1,95 %) и Ca (w = 3,38 %). Остальные встречаются значительно реже, а франций вообще не встречается. Орбитальные радиусы атомов этих элементов (кроме водорода) изменяются от 1,04 А (у бериллия) до 2,52 А (у цезия), то есть у всех атомов превышают 1 ангстрем. Это приводит к тому, что все эти элементы представляют собой элементы, образующие истинные металлы, а бериллий – элемент, образующий амфотерный металл. Общая валентная электронная формула элементов IA группы – ns1, а элементов IIА группы – ns2. Большие размеры атомов и незначительное число валентных электронов приводят к тому, что атомы этих элементов (кроме бериллия) склонны отдавать свои валентные электроны. Наиболее легко отдают свои валентные электроны атомы элементов IА группы, при этом из атомов щелочных элементов образуются однозарядные катионы, а из атомов щелочноземельных элементов и магния – двухзарядные катионы. Степени окисления в соединениях у щелочных элементов равна +1, а у элементов IIA группы – +2. Простые вещества, образуемые атомами этих элементов, – металлы. Литий, натрий, калий, рубидий, цезий и франций называют щелочными металлами, так как их гидроксиды представляют собой щелочи. Кальций, стронций и барий называют щелочноземельными металлами. Химическая активность этих веществ увеличивается по мере увеличения атомного радиуса. Из химических свойств этих металлов наиболее важны их восстановительные свойства. Щелочные металлы – сильнейшие восстановители. Металлы элементов IIA группы также довольно сильные восстановители.

Подгру́ппа ма́рганца — химические элементы 7-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы побочной подгруппы VII группы). В группу входят переходные металлы марганец Mn, технеций Tc и рений Re. На основании электронной конфигурации атома к этой же группе относится и элемент борий Bh, искусственно синтезированный в 1976 г. группой Юрия Оганесяна из Объединённого института ядерных исследований в Дубне. Как и в других группах, члены этого семейства элементов проявляют закономерности электронной конфигурации, особенно внешних оболочек, в результате проявляется сходство физических свойств и химического поведения. лементы группы 7 имеют по 7 валентных электронов. Все они являются серебристо-белыми тугоплавкими металлами. В ряду Mn — Tc — Re химическая активность понижается. Электропроводность рения приблизительно в 4 раза меньше, чем вольфрама. Металл этот представляет собой прекрасный материал для изготовления нитей электроламп, более прочных и долговечных, чем обычные вольфрамовые. На воздухе компактный металлический марганец покрывается тончайшей пленкой окисла, которая предохраняет его от дальнейшего окисления даже при нагревании. Напротив, в мелко раздробленном состоянии он окисляется довольно легко. Распространение в природе. Два из четырех членов группы — технеций и борий, являются радиоактивными с достаточно коротким периодом полураспада, ввиду чего в природе они не встречаются. Марганец принадлежит к распространенным элементам, составляя 0,03 % от общего числа атомов земной коры. Небольшие количества марганца содержат многие горные породы. Вместе с тем, встречаются и скопления его кислородных соединений, главным образом в виде минерала пиролюзита MnO2. Ежегодная мировая добыча марганцовых руд составляет около 5 млн т. Чистый марганец можно получить электролизом растворов его солей. Около 90 % всей добычи марганца потребляется при изготовлении различных сплавов на основе железа. Поэтому из руд обычно выплавляют прямо его высокопроцентный сплав с железом — ферромарганец (60-90 % Мn), которым затем и пользуются для введения марганца в другие сплавы. Выплавку ферромарганца из смеси марганцовых и железных руд ведут в электрических печах, причём марганец восстанавливается углеродом по реакции. Технеций в земной коре не содержится. Очень малые его количества были получены искусственно, причём было установлено, что по химическим свойствам он гораздо ближе к рению, чем к марганцу. Однако детальное изучение элемента и его соединений пока не осуществлено. Содержание рения в земной коре весьма мало (9×10−9 %). Элемент этот является чрезвычайно распыленным: даже наиболее богатые рением минералы (молибдениты) содержат его в количествах, обычно не превышающих 0,002 % по весу. Сколько-нибудь широкого использования рений и его производные пока не находят. Тем не менее, в 2007 г. мировое производство рения составило около 45 тонн. Он также является химически активным элементом.

Подгру́ппа желе́за — химические элементы 8-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы побочной подгруппы VIII группы). В группу входят железо Fe, рутений Ru и осмий Os. На основании электронной конфигурации атома к этой же группе относится и искусственно синтезированный элемент хассий Hs, который был открыт в 1984 в Центре исследования тяжёлых ионов (нем. Gesellschaft für Schwerionenforschung, GSI), Дармштадт, Германия в результате бомбардировки свинцовой (208Pb) мишени пучком ионов железа-58 из ускорителя UNILAC. В результате эксперимента были синтезированы 3 ядра 265Hs, которые были надёжно идентифицированы по параметрам цепочки α-распадов. Одновременно и независимо эта же реакция исследовалась в ОИЯИ (Дубна, Россия), где по наблюдению 3 событий α-распада ядра 253Es также был сделан вывод о синтезе в этой реакции ядра 265Hs, подверженного α-распаду. Свойства. Все элементы группы 8 содержат 8 электронов на своих валентных оболочках. Два элемента группы — рутений и осмий — относятся к семейству платиновых металлов. Как и в других группах, члены 8 группы элементов проявляют закономерности электронной конфигурации, особенно внешних оболочек, хотя, как ни странно, рутений не следует этому тренду. Тем не менее, у элементов этой группы тоже проявляется сходство физических свойств и химического поведения. Распространение в природе и биосфере. В чистом виде в природе железо редко встречается, чаще всего оно встречается в составе железо-никелевых метеоритов. Распространённость железа в земной коре — 4,65 %. Считается также, что железо составляет бо́льшую часть земного ядра. Содержание рутения и осмия в земной коре оценивается на уровне 2×10−11 %.

Рутений является единственным платиновым металлом, который обнаруживается в составе живых организмов. Концентрируется в основном в мышечной ткани. Высший оксид рутения крайне ядовит и, будучи сильным окислителем, может вызвать возгорание пожароопасных веществ.

Подгру́ппа хро́ма — химические элементы 6-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы побочной подгруппы VI группы). В группу входят хром Сr, молибден Mo и вольфрам W. На внешнем энергетическом уровне у атомов хрома и молибдена находится один электрон, у вольфрама — два, поэтому характерным признаком данных элементов является металлический блеск, что и отличает эту побочную подгруппу от главной. Степень окисления в соединениях всех элементов подгруппы хрома равна +6, а также +5, +4, +3 и +2. По возрастанию порядкового номера элементов возрастает и температура плавления. Например, вольфрам — самый тугоплавкий метал, его температура плавления составляет 3390 °C. Элементы подгруппы достаточно устойчивы к внешним факторам (воздух, вода). По физическим и химическим свойствам молибден и вольфрам сходны, но отличаются от хрома. Применение. Вольфрам, как самый тугоплавкий из всех элементов, широко применяется в металлургии. Молибден широко применяется в металлургии. Наиболее часто хром находит свое применение при производстве легированных сталей.

Абсолютная масса атома-масса атома или молекулы, выраженная в граммах.

А́томная едини́ца ма́ссы — внесистемная единица массы, применяемая для масс молекул, атомов, атомных ядер и элементарных частиц. Атомная единица массы выражается через массу нуклида углерода 12C и равна 1/12 массы этого нуклида.

Относительная атомная масса элемента - это число, показывающее, во сколько раз масса одного атома данного элемента больше 1/12 части массы атома изотопа углерода-12 (12С).

Относительной молекулярной массой называют отношение массы его молекулы к 1/12 части массы изотопа углерода 12С.

МОЛЬ-единица количества вещества СИ, обозначается моль. В 1 моле содержится столько молекул сколько атомов содержится в 0,012 кг 12С, т.е. 6,022·10

Количество вещества — физическая величина, характеризующая количество однотипных структурных единиц, содержащихся в веществе.

Моля́рная ма́сса вещества — масса одного моля вещества.

Число́ Авога́дро—физическая константа, численно равная количеству специфицированных структурных единиц (атомов, молекул, ионов, электронов или любых других частиц) в 1 моле вещества. Определяется как количество атомов в 12 граммах чистого изотопа углерода-12. Обозначается обычно как NA= 6,022×1023 моль−1.

Закон Авогадро. Первое следствие из закона Авогадро: один моль любого газа при одинаковых условиях занимает одинаковый объём. В частности, при нормальных условиях, т. е. при 0 °C (273К) и 101,3 кПа, объём 1 моля газа, равен 22,4 л. Этот объём называют молярным объёмом газа Vm. Второе следствие из закона Авогадро: молярная масса первого газа равна произведению молярной массы второго газа на относительную плотность первого газа по второму.

Норма́льные усло́вия — стандартные физические условия, с которыми обычно соотносят свойства веществ Атмосферное давление 101325 Па = 760 мм рт.ст.Температура воздуха 273,15 K = 0° C.

Моля́рный объём — объём одного моля вещества, величина, получающаяся от деления молярной массы на плотность. Характеризует плотность упаковки молекул.

Абсолютная плотность газа-это его плотнось в еденице объёма. Относительная-это число, показывающее отношение плотности данного вещества к плотности другого газа.

Закон постоянства состава—любое определенное химически чистое соединение независимо от способа его получения состоит из одних и тех же химических элементов, причем отношения их масс постоянны, а относительные числа их атомов выражаются целыми числами.

Закон сохранения массы—исторический закон физики, согласно которому масса как мера количества вещества сохраняется при всех природных процессах, то есть несотворима и неуничтожима.

Законы идеальных газов. Газовые законы - законы термодинамических процессов, протекающих в системе с неизменным количеством вещества при постоянном значении одного из параметров.

Закон Авогадро-закон идеальных газов, согласно которому в равных объемах различных газов при одинаковой температуре и давлении содержится одинаковое число молекул.

Закон Бойля-Мариотта - закон идеальных газов, согласно которому для данной массы данного газа при постоянной температуре произведение давления на объем есть величина постоянная. Закон Бойля-Мариотта описывает изотермический процесс.

Закон Гей-Люссака-закон идеальных газов, согласно котор. объем данного количества газа при постоянном давлении прямо пропорционален абсолютной температуре.

Закон Дальтона - физический закон, согласно которому давление смеси химически не взаимодействующих идеальных газов равно сумме парциальных давлений этих газов.

Закон Шарля-закон идеальных газов, согласно котор. давление данной массы идеального газа при постоянном объеме прямо пропорционально абсолютной температуре.

Майера уравнение - соотношение, устанавливающее связь между молярными теплоемкостями идеального газа при постоянном давлении и при постоянном объеме.

Уравнение Пуассона - уравнение, связывающее давление и объем идеального газа при адиабатическом процессе.

Уравнение Ван-дер-Ваальса - уравнение состояния реального газа, учитывающее химическую природу газа и собственный объем молекул.

Универсальная газовая постоянная - одна из основных физических постоянных (R):

- входящая в уравнение состояния идеального газа; и - численно равная работе расширения одного моля идеального газа в изобарном процессе при увеличении температуры на 1 К. R = 8.31441 +/- 0.00026 Дж/(моль*К). Температурный коэффициент объемного расширения газов.

Постоянная Больцмана - физическая постоянная (k), равная отношению универсальной газовой постоянной к постоянной Авогадро.k = 1.380622E-23 Дж/K.

емпературный коэффициент объемного расширения газов - постоянная, равная относительному изменению объема газа в изобарическом процессе при изменении температуры на один кельвин.

Температурный коэффициент давления газа - постоянная, равная относительному изменению давления газа в изохорическом процессе при изменении температуры на один кельвин. Уравнение Клапейрона — Менделеева — формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. pV=m/M*RT.

Эквивалент — это реальная или условная частица, которая может присоединять, высвобождать или другим способом быть эквивалентна катиону водорода в ионообменных реакциях или электрону в окислительно-восстановительных реакциях.

Молярная масса эквивалента - это масса моля эквивалента, выраженная в граммах(г/моль). Закон эквивалентов: вещества вступают в хим.реакции в количествах, пропорциональных их молярным массам эквивалентов. m1/m2=mЭ1/mЭ2.

Эквивалентный объём VЭ - объем, занимаемый при данных условиях одним эквивалентом вещества. Для водорода при н.у. равен 11,2 л, для кислорода-5,6 л. mЭ=A/M-для элемента; mЭ=М/Wn-для сложного вещества.

Правило Клечковского-эмпирическое правило, описывающее энергетическое распределение орбиталей в многоэлектронных атомах.Заполнение электронами орбиталей в атоме происходит в порядке возрастания суммы главного и орбитального квантовых чисел. При одинаковой сумме раньше заполняется орбиталь с меньшим значением.

Карбона́т на́трия—химическое соединение Na2CO3, натриевая соль угольной кислоты. Сода — общее название технических натриевых солей угольной кислоты. Na2CO3 —кальцинированная сода, Na2CO3·10H2O (декагидрат карбоната натрия, содержит 62,5 % кристаллизационной воды) — стиральная сода; иногда выпускается в виде Na2CO3·H2O или Na2CO3·7H2O, NaHCO3 (гидрокарбонат натрия) — питьевая или пищевая сода, натрий двууглекислый, бикарбонат натрия. Название «сода» происходит от растения Salsola Soda, из золы которого её добывали. Кальцинированной соду называли потому, что для получения её из кристаллогидрата приходилось его кальцинировать (то есть нагревать до высокой температуры). Каустической содой называют гидроксид натрия. В природе сода встречается в золе некоторых морских водорослей, а также в виде следующих минералов: нахколит NaHCO3, трона Na2CO3·NaHCO3·2H2O, натрит (сода) Na2CO3·10H2O, термонатрит Na2CO3·Н2O. Современные содовые озёра известны в Забайкалье и в Западной Сибири; большой известностью пользуется озеро Натрон в Танзании и озеро Сирлс в Калифорнии. До начала XIX века карбонат натрия получали преимущественно из золы некоторых морских водорослей и прибрежных растений. Na2SO4 + 2C → Na2S + 2CO2↑.Сульфид натрия реагирует с карбонатом кальция: Na2S + СаСО3 → Na2CO3 + CaS. Сульфат натрия получали обработкой каменной соли (хлорида натрия) серной кислотой: Сульфат натрия получали обработкой каменной соли (хлорида натрия) серной кислотой: 2NaCl + H2SO4 → Na2SO4 + 2HCl↑.Свойства.

Кристаллогидраты карбоната натрия существуют в разных формах: бесцветный моноклинный Na2CO3·10H2O, при 32,017 °C переходит в бесцветный ромбический Na2CO3·7H2O, последний при нагревании до 35,27 °C бесцветный переходит в ромбический Na2CO3·H2O. Безводный карбонат натрия представляет собой бесцветный кристаллический порошок. В водном растворе карбонат натрия гидролизуется, что обеспечивает щелочную реакцию среды. Уравнение гидролиза (в ионной форме): CO32− + H2O ↔ HCO3− + OH−. Первая константа диссоциации угольной кислоты равна 4,5×10−7. Все кислоты, более сильные, чем угольная, вытесняют её в реакции с карбонатом натрия. Так как угольная кислота крайне нестойкая, она тут же разлагается на воду и углекислый газ: Na2CO3 + H2SO4 → Na2SO4 + CO2↑ + H2O.Применение. Карбонат натрия используют в стекольном производстве, мыловарении и производстве стиральных и чистящих порошков, эмалей, для получения ультрамарина. Также он применяется для смягчения воды паровых котлов и вообще устранения жёсткости воды, для обезжиривания металлов и десульфатизации доменного чугуна.

Ка́льций — элемент главной подгруппы второй группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 20. Обозначается символом Ca. Кальций— мягкий, химически активный щёлочноземельный металл серебристо-белого цвета. Свободный металлический кальций получают электролизом расплава, состоящего из CaCl2 (75-80 %) и KCl или из CaCl2 и CaF2, а также алюминотермическим восстановлением CaO при 1170—1200 °C: 4CaO + 2Al → CaAl2O4 + 3Ca. Кальций — типичный щелочноземельный металл. Химическая активность кальция высока, но ниже, чем всех других щелочноземельных металлов. Он легко взаимодействует с кислородом, углекислым газом и влагой воздуха, из-за чего поверхность металлического кальция обычно тускло серая, поэтому в лаборатории кальций обычно хранят, как и другие щелочноземельные металлы, в плотно закрытой банке под слоем керосина или жидкого парафина. В ряду стандартных потенциалов кальций расположен слева от водорода. Стандартный электродный потенциал пары Ca2+/Ca0 −2,84 В, так что кальций активно реагирует с водой, но без воспламенения: Ca + 2Н2О → Ca(ОН)2 + Н2↑ + Q. С активными неметаллами (кислородом, хлором, бромом) кальций реагирует при обычных условиях: 2Са + О2 → 2СаО, Са + Br2 → CaBr2. При нагревании на воздухе или в кислороде кальций воспламеняется. С менее активными неметаллами (водородом, бором, углеродом, кремнием, азотом, фосфором и другими) кальций вступает во взаимодействие при нагревании, например: Са + Н2 → СаН2, Ca + 6B = CaB6, 3Ca + N2 → Ca3N2, Са + 2С → СаС2, 3Са + 2Р → Са3Р2 (фосфид кальция), известны также фосфиды кальция составов СаР и СаР5; 2Ca + Si → Ca2Si (силицид кальция), известны также силициды кальция составов CaSi, Ca3Si4 и CaSi2. Протекание указанных выше реакций, как правило, сопровождается выделением большого количества теплоты (то есть эти реакции — экзотермические). Во всех соединениях с неметаллами степень окисления кальция +2. Большинство из соединений кальция с неметаллами легко разлагается водой, например: СаН2 + 2Н2О → Са(ОН)2 + 2Н2↑, Ca3N2 + 6Н2О → 3Са(ОН)2 + 2NH3↑. Ион Ca2+ бесцветен. При внесении в пламя растворимых солей кальция пламя окрашивается в кирпично-красный цвет. Такие соли кальция, как хлорид CaCl2, бромид CaBr2, иодид CaI2 и нитрат Ca(NO3)2, хорошо растворимы в воде. Нерастворимы в воде фторид CaF2, карбонат CaCO3, сульфат CaSO4, ортофосфат Ca3(PO4)2, оксалат СаС2О4 и некоторые другие. Важное значение имеет то обстоятельство, что, в отличие от карбоната кальция СаСО3, кислый карбонат кальция (гидрокарбонат) Са(НСО3)2 в воде растворим. В природе это приводит к следующим процессам. Когда холодная дождевая или речная вода, насыщенная углекислым газом, проникает под землю и попадает на известняки, то наблюдается их растворение: СаСО3 + СО2 + Н2О → Са(НСО3)2. В тех же местах, где вода, насыщенная гидрокарбонатом кальция, выходит на поверхность земли и нагревается солнечными лучами, протекает обратная реакция: Са(НСО3)2 → СаСО3 + СО2↑ + Н2О.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]