
- •1. Основные понятия и теоремы теории вероятности:.
- •2. Случайные величины и их числовые характеристики.
- •3. Основные понятия математической статистики:
- •4.Сравнение статистических совокупностей
- •5.Корреляционная зависимость. Коэффициент корреляции и его свойства. Уравнение регрессии.
- •6. Основные понятия теории информации.
- •22. Общая схема съема, передачи и регистрации информации.
- •23. Понятие о сенсорных системах. Абсолютные и дифференциальные пороги.
- •24. Элементы психофизики. Связь между изменением интенсивности ощущения с изменением силы раздражителя (законы Вебера, Вебера – Фехнера и Стивенса).
- •27.Обратимые и необратимые процессы. Энтропия. Термодинамическое толкование энтропии.
- •28. Статистическое толкование энтропии. Второе начало термодинамики.
- •Постоянство внутренней среды организма.
- •Сравнение стационарного состояния и термодинамического равновесия.
- •Аутостабилизация стационарных систем. Принцип Ле – Шателье – Бауэра.
- •36. Биореология.
- •Реологические свойства крови, плазмы и сыворотки крови.
- •Методы измерения вязкости крови.
- •Физические основы гемодинамики.
- •Общие закономерности движения крови по кровеносному руслу.
- •Гидравлическое сопротивление сосудов. Гидравлическое сопротивление разветвлённых участков.
- •Зависимость давления и скорости течения крови от участка сосудистого русла.
- •Ламинарное и турбулентное течение. Число Рейнольдса.
- •Физические основы клинического метода измерения давления крови.
- •Пульсовые волны. Скорость распространения пульсовой волны.
- •Механические и электрические модели кровообращения.
- •Затухающие колебания. Уравнение затухающих колебаний.
- •Акустика. Физические характеристики звука. Шкала интенсивности.
- •Характеристики слухового ощущения. Пороги слышимости.
- •Закон Вебера – Фехнера. Шкала громкости. Единицы измерения громкости.
- •Физика слуха.
- •63. Инфразвук. Физическая характеристика инфразвука. Биофизическое действие ультразвука. ((Рем.,стр168)
- •Общая характеристика медицинской электронной аппаратуры.
- •Методы исследования мембран. Рентгеноструктурный анализ. Электронная микроскопия.
- •Простая и облегченная диффузия.
- •Активный транспорт веществ через мембрану. Понятие о натрий – калиевом насосе.
- •Биопотенциалы.
- •Уравнение Гольдмана – Ходжкина – Хаксли.
- •Потенциал действия. Генерация потенциала действия.
- •Распространение потенциала действия. Понятие о локальных токах. Кабельная теория распространения потенциала действия.
- •Особенности распространения потенциала действия в мякотных и безмякотных волокнах.
- •Биофизические принципы исследования электрических полей в организме. Понятие о токовом диполе.
- •Дипольный эквивалентный генератор сердца.
- •Генез электрокардиограммы. Особенности проведения возбуждения по миокарду.
- •Теория отведения Эйнтховена. Электрокардиография основывается на теории отведений Эйнтховена, которая позволяет судить о потенциалах сердца по потенциалам, снятым с поверхности тела.
- •86. Интерференция света.
- •Дифракция света. Принцип Гюйгенса – Френеля.
- •Дифракционная решетка. Дифракционный спектр.
- •Понятие о голографии и ее применение в медицине.(Ремезов, с.435 - 438).
- •Поляризация света. Поляриметрия.(Ремезов, с.439 - 447).
- •92. Поглощение света. Закон Бугера-Бера
- •93. Поглощение света растворами. Закон Бугера-Бера-Бера. Концентрационная колориметрия. ("кк").
- •94. Фотобиологические процессы. Основые правила фотохимии.
- •112. Тормозное рентгеновское излучение. Спектр тормозного рентгеновского излучения и его граница
- •113. Характеристическое рентгеновское излучение и его спектр.
- •Взаимодействие рентгеновского излучения с веществом.
- •115. Радиоактивность. Основной закон радиоактивного распада.
- •Основной закон радиоактивного распада:
- •111. Радиационная биофизика и ее задачи.
- •116. Ионизирующее излучение и его характеристики.
- •117. Взаимодействие ионизирующего излучения с веществом.
- •118. Дозиметрия ионизирующего излучения. Кривые «доза – эффект. Поглощенная и экспозиционная доза.
Механические и электрические модели кровообращения.
Для изучения свойств и поведения органов кровообращения в различных условиях функционирования создаются модели, призванные раскрыть некоторые особенности физиологических механизмов их деятельности. Одна из них – механическая (см. схему).
Компрессионная камера
З
В
(клапан)
L (кинетическая энергия)
R
(резистивное
сопротивление) U(насос) С
(эластичность
артерий)
десь
источникU,
дающий несинусоидальное переменное
электрическое напряжение, служит
аналогом сердца. Выпрямитель В служит
аналогом сердечного клапана. Конденсатор
С в течение полупериода накапливает
заряд, а затем разряжается на резистор
R,
таким образом происходит сглаживание
силы тока, протекающий через резистор.
Действие конденсатора аналогично
действию упругого резервуара (аорты,
артерии), который сглаживает колебания
давления крови в артериолах и капиллярах.
Резистор является ЭЛЕКТРИЧЕСКИМ
АНАЛОГОМ периферической
сосудистой системы.
Работа и мощность сердца. ( Ремизов А.Н. стр.210-211)
Работа, совершаемая сердцем, затрачивается на преодоление сил давления и сообщение крови КИНЕТИЧЕСКОЙ ЭНЕРГИИ.
Во время систолы левым желудочком в аорту выбрасывается ОБЪЕМ крови, который называется УДАРНЫМ (Vу ). Можно считать, что этот объем сердца продавливает по аорте сечением S на расстояние L при среднем давлении Р. Тогда работа состоит состоит из 2-х частей и расходуется:
на преодоление сил давления и равна: А1= Fl = PSl = PVу
на сообщение кинетической энергии этому объему крови: A2=mv2/2
= Vу v2/2; где, - плотность крови; v- скорость крови в аорте;
Работа левого желудочка Ал=А1+А2. Работа правого желудочка равняется 0,2 от работы левого. Поэтому работа сердца при одном сокращении: А=Ал+Апр=Ал+0,2Ал=1,2Ал=1,2 Vу(P+v2/2)
Если среднее давление P=13кПа, Vу =60мл, =1051,03кг/м3, v =0,5м/с то за одно сокращение A=1Дж.
Основные положения гемодинамики.
Движение крови по сосудам обусловлено разностью давления в начальном и конечном участках кровяного русла.
Объёмная скорость кровотока (объём крови протекающий через поперечное сечение сосудистого русла в единицу времени) вычисляется по формуле:
Q = (p2 - p1)/X, где X — периферическое сопротивление сосудистого русла, (p2 - p1) — разность давления в начале и в конце русла.
Линейная скорость кровотока вычисляется по формуле: V=Q/S Периферическое сопротивление сосуда — X = 8 l /(R4), где l —
длина сосуда, R — его радиус, — коэффициент вязкости. Выводится на основании аналогий законов Ома и Пуазейля (движение электричества и жидкости описываются общими соотношениями. Гидравлическое сопротивление в значительной степени зависит от радиуса сосудов. Отношение радиусов для различных участков сосудистого русла: Rаорт:Rар:Rкап =3000:500:1.
Незатухающие колебания. Уравнения незатухающих колебаний. ( Ремезов. С.130 – 131).
Колебаниями называются повторяющиеся движения или изменения состояния.
Периодические изменения физической величины в зависимости от времени, происходящие по закону синуса или косинуса, называются гармоническими колебаниями.
Х = А соs (0t +0), где Х – значение физической величины в момент времени t А – амплитуда колебаний (максимальное отклонение от положения равновесия) t - время 0 – круговая частота колебаний (0t +0) = - фаза колебаний 0 – начальная фаза колебаний.
Гармонические колебания при отсутствии сил трения являются незатухающими.