Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
теория физика 2 курс 2 семестр.docx
Скачиваний:
12
Добавлен:
22.02.2015
Размер:
165.93 Кб
Скачать

8 Билет

1 Вопрос

Закон прямолинейного распространения света : в прозрачной однородной среде свет распространяется по прямым линиям. В связи с законом прямолинейного распространения света появилось понятие световой луч, которое имеет геометрический смысл как линия, вдоль которой распространяется свет. Реальный физический смысл имеют световые пучки конечной ширины. Световой луч можно рассматривать как ось светового пучка. Поскольку свет, как и всякое излучение, переносит энергию, то можно говорить, что световой луч указывает направление переноса энергии световым пучком. Также закон прямолинейного распространения света позволяет объяснить, как возникают солнечные и лунные затмения.

2 Вопрос

Спонтанное и индуцированное излучение

 Атомы и молекулы находятся в определенных энергетических состояниях, находятся на определенных энергетических уровнях. Для того, чтобы изолированный атом изменил свое энергетическое состояние, он должен либо поглотить фотон (получить энергию) и перейти на более высокий. энергетический уровень, либо излучить фотон и перейти в более низкое энергетическое состояние

 

 Если в области, где находится возбужденный атом отсутствует электромагнитное поле, то процесс перехода атома в нижнее состояние, сопровождаемый излучением фотона и характеризуемый постоянной составляющей вероятности перехода, называется спонтанным излучением.

Спонтанное излучение не когерентно так как при этом различные атомы излучают независимо друг от друга.

Интенсивность спонтанного излучения убывает по экспонентциальному закону.

 Схема действия квантового генератора приведена на рис. 362. Пространство между зеркалами заполнено активной средой, т. е. средой, содержащей больше возбужденных атомов, чем невозбужденных. Среда усиливает проходящий через нее свет, начало которому дает спонтанное излучение одного из атомов. Большое усиление достигается, когда угол a очень мал так что свет испытывает много отражений и все лучи накладываются, усиливая друг друга. Излучение генератора выходит наружу через зеркало 2. Такой генератор  излучает свет с частотой n=(W—W')/h, где W — W' — разность  энергий  уровней, Рис. 362. Схема действия оптического квантового генератора: 1, 2 — плоскопараллельные зеркала; зеркало 2 слегка прозрачно. (Угол a на рисунке сильно преувеличен.) участвующих в процессе. Построены генераторы и усилители, действующие в диапазоне коротких радиоволн, инфракрасного, видимого и ультрафиолетового света. Так как при излучении света атомы переходят с верхнего уровня на нижний, генерация приводит к быстрому уменьшению избытка населенности верхнего уровня. Если не восполнять уменьшение, то действие генератора прекратится, как только избыточная населенность снизится до некоторого предельного уровня.

9 Билет

1 Вопрос

Простейшим для расчета и практически очень важным случаем является фраунгоферова дифракция на длинной прямоугольной щели (Дифракция Фраунгофера на щели). Ширину щели обозначим через b, ее длину будем считать бесконечной. Пусть на щель нормально падает плоская монохроматическая волна (рис. 5.7.1). Световое поле за щелью найдется по принципу Гюйгенса как результат интерференции когерентных вторичных волн, исходящих из различных точек волнового фронта на щели. Вторичные волны, излучаемые полоской волнового фронта ширины dx, параллельной щели, складываясь, дают цилиндрическую волну, осью которой является эта полоска. Зависимость этой волны от направления ее распространения, определяемого углом j должен предполагаться малым. Однако необходимо учесть разности фаз между волнами, исходящими из различных полосок. Разумеется, речь идет о фазах колебаний на бесконечном расстоянии от щели. Волна, исходящая из dx под углом j, опережает по фазе волну того же направления, исходящую из середины щели О, на kx sinj.

Поэтому результирующее поле в бесконечности, создаваемое всей щелью, представиться интегралом

Здесь опущены все множители, не являющиеся на относительное распределение волнового поля по направлениям. Вычислив интеграл, получим

Где введено обозначение

Отсюда для распределения интенсивности света по направлениям найдем 

Где - интенсивность в направлении падающей волны. Обе функции обращаются в максимум, равной единице, при a=0. При , где m=1,2 они равны 0. Между двумя соседними минимумами располагаются максимумы различных порядков. Их положения определяются трансцендентным уравнением a cos-sina=0. Практически можно считать, что максимумы располагаются посередине между соседними минимумами.

Рис. 5.7.1. Дифракция Фраунгофера на щели

Дифракция Фраунгофера на дифракционной решетке. Условия минимумов и максимумов.

Большое практическое значение имеет дифракция, наблюдаемая при прохождении света через одномерную дифракционную решетку - систему параллельных щелей равной ширины, лежащих в одной плоскости и разделенных равными по ширине непрозрачными промежутками. Рассматривая дифракцию Фраунгофера на щели, мы видели, что распределение интенсивности на экране определяется направлением дифрагированных лучей. Это означает, что перемещение щели параллельно самой себе влево или вправо не изменит дифракционной картины. Следовательно, если перейти от одной щели ко многим (к дифракционной решетке), то дифракционные картины, создаваемые каждой щелью в отдельности, будут одинаковыми.

Рассмотрим дифракционную решетку. На рис. 7.1 для наглядности показаны только две соседние щели MN и CD. Бели ширина каждой щели равна а, а ширина непрозрачных участков между щелями b, то величина d=a+b называется постоянной (периодом) дифракционной решетки. Пусть плоская монохроматическая волна падает нормально к плоскости решетки. Так как щели находятся друг от друга на одинаковых расстояниях, то разности хода лучей, идущих от двух соседних щелей, будут для данного направления  одинаковы в пределах всей дифракционной решетки:

 (7.1)

Очевидно, что в тех направлениях, в которых ни одна из щелей не распространяет свет, он не будет распространяться и при двух щелях, т. е. прежние (главные) минимумы интенсивности будут наблюдаться в направлениях, определяемых условием ((6.2)  (m=1,2,3,…)):

 (m = 1, 2, 3, ...). (7.2)

Кроме того, вследствие взаимной интерференции световых лучей, посылаемых двумя щелями, в некоторых направлениях они будут гасить друг друга, т. е. возникнут дополнительные минимумы. Очевидно, что эти дополнительные минимумы будут наблюдаться в тех направлениях, которым соответствует разность хода лучей , ..., посылаемых, например, от крайних левых точек М и С обеих щелей. Таким образом, с учетом (7.1) условие дополнительных минимумов:

 (m = 1, 2, 3, ...)

 

Наоборот, действие одной щели будет усиливать действие другой, если

 (m=0, 1, 2, ...), (7.3)

т. е. выражение (7.3) задает условие главных максимумов.

т. е. между двумя главными максимумами располагается один дополнительный минимум. Аналогично можно показать, что между каждыми двумя главными максимумами при трех щелях располагается два дополнительных минимума, при четырех щелях - три и т. д.