Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
машина-поле.Lab_rob_5.doc
Скачиваний:
7
Добавлен:
22.02.2015
Размер:
188.42 Кб
Скачать

Лабораторна робота № 5 застосування імовірнісно-статистичних методів для контролю якості виконання технологічних операцій у землеробстві

Мета роботи: Ознайомитись із застосуванням імовірнісно-статистичних методів для контролю якості виконання технологічних операцій. Побудувати криву нормального розподілу випадкових величин f(x).

Теоретичні передумови

Контроль якості виконання технологічних операцій у рільництві базується на виконанні вимірювань. Наприклад, для оцінки якості виконання оранки необхідно зробити певну кількість вимірів глибини обробітку ґрунту, для оцінки якості виконання сівби-певну кількість вимірів глибини загортання насіння у грунт і величини відхилення рослин від осьової лінії рядка тощо. В усіх цих випадках в результаті виконання вимірювань одержують масиви (тобто велику кількість) значень глибини обробітку ґрунту, глибини загортання насіння у грунт і величини відхилення рослин від осьової лінії рядка.

Аналіз цих масивів показує, що їх окремі значення відрізняються одне від одного. Наприклад, можемо мати такий масив даних глибини обробітку ґрунту (см) у порядку виконання вимірювань: 25; 26,3; 24,5; 25; 27,2; 25,8; 27,2 і т.д. Результати вимірювань вказують на наявність відхилень фактичної глибини обробітку ґрунту від заданої (наприклад 25 см), які, в свою чергу, можуть бути обумовлені рядом факторів, таких як нерівності поверхні ґрунту, різна щільність і вологість ґрунту по напрямку руху орного агрегату і т.д. Виконуючи вимірювання глибини обробітку ґрунту, кожного разу отримують її значення, наперед невідомо, яке саме.

Явища і процеси, які характеризуються наявністю змінних величин, значення яких наперед невідомі (тобто випадкові), досліджуються і вивчаються із застосуванням методів теорії імовірностей – математичної науки, яка вивчає закономірності у випадкових явищах.

Теорія імовірностей виникла з практичних – потреб – необхідності створення математичного апарату, пристосованого для аналізу випадкових явищ (азартні ігри, похибки вимірювань, нещасні випадки і т.п.). Одним з джерел формування теорії імовірностей були саме азартні ігри (гральні кості, карти), а слово "азарт" з французької мови перекладається як "випадок".

Теорія імовірностей оперує рядом понять, найважливішими серед яких є поняття події, імовірності, випадкової величини.

Подія будь який факт, який в результаті досліду (виконання вимірювань, проведення спостережень тощо) може відбутись або не відбутись. Наприклад, 1-поява герба при киданні монети, 2-поява трьох гербів, при трьох киданнях монети, 3-вихід з ладу деталі після t годин роботи, 4-значення глибини оранки 25 см, 5-однакове значення глибини оранки, рівне 25,8 см, при виконанні 7 послідовних вимірювань в різних точках поля. Кожна подія має певну ступінь можливості: одна більшу, друга-меншу. Наприклад, події 1 і 4 більш можливі, ніж події 2і.Для кількісного порівняння подій по ступеню їх можливості, треба з кожною з них зв'язати певне число, яке тим більше, чим більш можлива подія. За одиницю виміру приймається імовірність достовірної події, тобто події, яка повинна обов'язково відбутись. Наприклад, значення глибини обробітку ґрунту при оранці більше 25см, або менше 25см. Для достовірної події імовірність приймається рівною 1. Для неможливої події, тобто такої, яка не може відбутись (наприклад, загортання насінини в грунт одночасно на глибину 5 і 6см), імовірність приймається рівною 0. Всі інші події, можливі, але не достовірні, будуть мати імовірність, яка складає частку одиниці, тобто в межах від 0 до 1.

Кілька подій у даному досліді утворюють повну групу подій, якщо в результаті досліду повинна обов'язково з'явитися хоча б одна з них. Наприклад, глибина загортання насіння у грунт при сівбі більше 5 см і менше 5 см.

Кілька подій називаються несумісними, якщо ніякі дві з них в даному досліді не можуть з'явитись разом. Наприклад, напрацювання машини до першої поломки більше 10 год і менше 10 год.

Кілька подій називаються рівноможливими, коли ні одна з цих подій не є об'єктивно більш можливою, ніж інша. Наприклад, випадання герба і цифри при киданні монети, відхилення насінин при сівбі вправо і вліво від осьової лінії рядка.

Групи подій, які мають всі три властивості (утворюють повну групу подій, несумісні, рівно можливі), називаються випадками.

Випадок називається сприятливим деякій події, якщо поява цього випадку тягне за собою появу даної події. Наприклад, такі випадки, як напрацювання машини до першої поломки 15 або 20 годин є сприятливими для появи такої події, як напрацювання машини до першої поломки більше 10 год.

Імовірністю події А називається відношення кількості випадків, сприятливих події А, до загальної кількості випадків, тобто

, (2.1)

де mкількість випадків, сприятливих події А;

nзагальна кількість випадків.

Формула (2.1) використовується для безпосереднього підрахунку імовірностей і застосовується тоді і тільки тоді, коли дослід зводиться до схеми випадків, тобто володіє симетрією можливих результатів. Так, наприклад, можна підрахувати імовірність діставання білої кулі з урни, в якій є 45 білих, 35 червоних і 20 чорних куль. Р(А) називають ще математичною імовірністю.

Для подій, що не зводяться до схеми випадків (вихід з ладу деталі протягом 1 год роботи, загортання насінини в грунт на задану глибину і т.д.), способи обчислення імовірності базуються на експерименті. В цьому випадку застосовують термін частота події, або статистична імовірність. Частота події А визначається як

, (2.2)

де m- кількість дослідів, в яких з'явилась подія А;

n- загальна кількість дослідів.

При невеликій кількості дослідів частота події має в значній мірі випадковий характер, але при збільшенні кількості дослідів вона має тенденцію до стабілізації і наближення з практичною достовірністю до імовірності.

Випадковою величиною називається величина, яка в досліді може прийняти то чи інше значення, причому наперед невідомо, яке саме. Наприклад,

1-кількість попадань в мішень при 10 пострілах,

2-кількість стебел пшениці на 1м2 поля;

3-вага коренеплодів цукрових буряків;

4-глибина загортання насінин у грунт при сівбі.

Випадкові величини, які приймають тільки відділені одне від одного значення, називаються дискретними випадковими величинами (як у прикладах 1 і 2).

Випадкові величини, можливі значення яких безперервно заповнюють деякий проміжок, називаються безперервними випадковими величинами (як у прикладах 3 і 4).

Розглянемо дискретну випадкову величину А з можливими, але не достовірними, значеннями а1, а2, а3,..., аn, кожне з яких може бути прийняте з деякою імовірністю. В результаті досліду випадкова величина А прийме одне з цих значень, тобто відбудеться одна з повної групи несумісних подій. Позначимо імовірності цих подій відповідно р1, р2, р3,..., рn. Для несумісних подій, які утворюють повну групу . Випадкова величина будеповністю описана з імовірнісної точки зору, якщо вказати, яку імовірність має кожна з подій, тобто встановити закон розподілу випадкової величини.

Законом розподілу випадкової величини називається всяке співвідношення, яке встановлює зв'язок між можливими значеннями випадкової величини і відповідними їм імовірностями. Найпростішою формою представлення такого закону є таблиця:

а1

а2

а3

...

аn

р1

р2

р3

...

рn

Така таблиця називається рядом розподілу випадкової величини А.

Ряд розподілу існує тільки для дискретних величин. Для характеристики безперервних величин застосовується функція розподілу F(х). Похідна від функції розподілу характеризує щільність, з якою розподіляютьсязначення випадкової величини в даній точці, і називається щільністю розподілу або щільністю імовірності. Щільність розподілу є одна з форм закону розподілу, а крива називаєтьсякривою розподілу.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.