Marshak_Elektron_tabl
.pdf
Ijb pvhfm kihkh[• \ i_\ghfm ihjy^dm \bibkmxlvky jy^ agZq_gv g_aZ- e_`gh€ af•ggh€ x1,x2,x3,… xn • \•^ih\•^g• agZq_ggy nmgdp•€ y1,y2,y3,…y n.GZijbdeZ^ lZ[ebp• eh]Zjbnf•\ lZ[ebp• agZq_gv ljb]hghf_ljbqgbo nmgdp•c
• l ^ LZ[ebqgbc kihk•[ aZ^Zggy nmgdp•€ ^m`_ ihrbj_gbc \ l_og•p• ijbjh^h-
agZ\kl\• • l i P_c kihk•[ ^m`_ ajmqgbc dheb h[eZklv \bagZq_ggy nmgdp•€ kdeZ^Z}lvky •a kd•gq_gh]h qbkeZ lhqhd Lh^• nmgdp•x fh`gZ aZ^Zlb aZ ^hih-
fh]hx lZ[ebp• \ yd•c \ h^ghfm jy^dm Z[h klh\iqbdm aZibkZg• \k• agZq_ggy Zj]mf_glm Z \ ^jm]hfm – \•^ih\•^g• agZq_ggy nmgdp•€
x |
x1 |
x2 |
x3 |
... |
xn |
y |
y1 |
y2 |
y3 |
... |
yn |
I_j_\Z]b ^Z} fh`eb\•klv \bagZqblb l• Z[h •gr• dhgdj_lg• agZq_ggy nmgdp•€ \•^jZam [_a ^h^Zldh\bo \bf•j•\ Z[h h[qbke_gv
G_^he•db \bagZqZ} nmgdp•x g_ ih\g•klx Z ebr_ ^ey ^_ydbo agZq_gv Zj]mf_glm g_ ^Z} gZhqgh]h ah[jZ`_ggy oZjZdl_jm af•gb nmgdp•€ •a af•ghx Zj]mf_glm
[ =jZn•qgbc kihk•[ aZ^Zggy nmgdp•€
P_c kihk•[ ihey]Z} \ lhfm sh ih^Z}lvky ]jZn•d i_\gh€ nmgdp•€ FZxqb ]jZn•d nmgdp•€ fh`gZ agZclb €€ agZq_ggy \ [m^v-yd•c lhqp• ydZ gZe_`blv
kmdmighkl• lhqhd sh ml\hjxxlvky ijb ijh_dlm\Zgg• ]jZn•dZ gZ \•kv Ho p_ [m^_ h[eZklv •kgm\Zggy nmgdp•€ >ey pvh]h a lhqdb o lj_[Z ijh\_klb i_ji_g-
^bdmeyj ^h hk• Ho ijh^h\`blb ch]h ^h i_j_lbgm a ]jZn•dhf • \bf•jylb ^h\`b-
gm pvh]h i_ji_g^bdmeyjZ [_jmqb €€ •a agZdhf f•gmk dheb ]jZn•d agZoh^blvky i•^ \•kkx Ho).
I_j_\Z]b ^Z} ijhkl_ • gZhqg_ my\e_ggy ijh yd•kgm ih\_^•gdm nmgdp•€
G_^he•db f_gr ijb^Zlgbc ^ey h[qbke_gv g•` lZ[ebpy agZq_gv nmgdp•€ q_j_a l_ sh lhqg•klv h[qbke_ggy agZq_gv nmgdp•€ aZ ^hihfh]hx ]jZn•dm ^h-
kblv gbavdZ \gZke•^hd ihob[hd ijb ijh\_^_gg• i_ji_g^bdmeyj•\ • \bf•jx\Zgg• ^h\`bg Z lZdh` \gZke•^hd lh]h sh djb\Z g_ } e•g•}x \ ]_hf_ljbqghfm jham-
f•gg• [h fZ} i_\gm lh\sbgm
\ :gZe•lbqgbc kihk•[ aZ^Zggy nmgdp•€
AZ pbf kihkh[hf nmgdp•y aZ^Z}lvky ZgZe•lbqgh aZ ^hihfh]hx nhjfmeb LZdbc kihk•[ ^Z} fh`eb\•klv ^ey dh`gh]h qbkeh\h]h agZq_ggy Zj]mf_glm o
agZclb \•^ih\•^g_ chfm qbkeh\_ agZq_ggy nmgdp•€ y lhqgh Z[h a ^_ydhx lhqg•klx
Ijb ZgZe•lbqghfm kihkh[• nmgdp•y fh`_ [mlb aZ^ZgZ • ^_d•evdhfZ j•agbfb nhjfmeZfb GZijbdeZ^ nmgdp•x
ì |
|
ïFRV [ O@ID p £ |
|
ï |
O@ID < |
I [ = í |
|
ï |
|
ï |
O@ID £ |
î |
[ |
[ £ [ <
[ £
aZ^Zgh \ h[eZkl• \bagZq_ggy [– p,2] aZ ^hihfh]hx ljvho nhjfme
11
Ydsh aZe_`g•klv f•` Zj]mf_glhf x • nmgdp•}x y aZ^ZgZ nhjfmehx jha-
\¶yaZghx \•^ghkgh nmgdp•€ y lh[lh fZ} \b]ey^ y = f (x lh dZ`mlv sh nmgdp•y \•^ o aZ^ZgZ \ y\ghfm \b]ey^• gZijbdeZ^ y = 6x – 2, y = x2lnx.
Ydsh ` agZq_ggy o • y a\ yaZg• ^_ydbf j•\gyggyf \b]ey^m F(x, y) = 0, lh[lh nhjfmeZ g_ jha\¶yaZgZ \•^ghkgh nmgdp•€ y lh dZ`mlv sh nmgdp•y aZ^ZgZ
g_y\gh gZijbdeZ^ j•\gyggy x2 + y2 – r2 |
g_y\gh \bagZqZ} ^\• nmgdp•€ |
\ = ± U + [ . |
|
Ke•^ aZm\Z`blb sh g_ dh`gm g_y\gh aZ^Zgm nmgdp•x fh`gZ ij_^klZ- \blb m y\ghfm \b]ey^• y = f (x GZ\iZdb [m^v-ydm y\gm nmgdp•x y = f (x) fh`gZ aZ\`^b ij_^klZ\blb m \b]ey^• g_y\gh€ y - f (x) = 0.
S_ h^gbf j•agh\b^hf ZgZe•lbqgh]h aZ^Zggy nmgdp•€ fh`_ [mlb \biZ^hd dheb • Zj]mf_gl x • nmgdp•y y } nmgdp•yfb lj_lvh€ \_ebqbgb – iZjZf_ljZ t:
x = ϕ (t), y = ψ (t),
^_ t ijbcfZ} agZq_ggy gZ fgh`bg• T Lml dh`ghfm qbkeh\hfm agZq_ggx t0 iZ-
jZf_ljZ t a h[eZkl• ch]h af•gb L \•^ih\•^Zxlv qbkeh\• agZq_ggy xo = ϕ (to lZ y0 = ψ(t0 \_ebqbg o • y Py \•^ih\•^g•klv \bagZqZ} y yd nmgdp•x \•^ o Z[h o yd
nmgdp•x \•^ y LZd_ aZ^Zggy nmgdp•hgZevgh€ aZe_`ghkl• gZab\Z}lvky iZjZ- f_ljbqgbf.
Ydsh jha]ey^Zlb agZq_ggy o • y yd dhhj^bgZlb lhqdb gZ dhhj^bgZlg•c iehsbg• oHm lh \b^gh sh dh`ghfm agZq_ggx t \•^ih\•^Zlbf_ i_\gZ lhqdZ iehsbgb Ydsh t af•gx}lvky \•^ t1 ^h t2 lh lhqdZ gZ iehsbg• hibkm} ^_ydm djb\m Ijb \bdexq_gg• iZjZf_ljm t a j•\gygv hljbfZ}fh nmgdp•x ydm aZ^Zgh \ y\ghfm \b]ey^•
Nmgdp•x fh`gZ aZ^Zlb lZdh` • \ iheyjgbo dhhj^bgZlZo
IheyjgZ kbkl_fZ dhhj^bgZl \bagZqZ}lvky aZ^Zggyf ^_ydh€ lhqdb H, ijhf_gx Hp gZijZ\e_ghfm a p•}€ lhqdb lZ h^bgbp• fZkrlZ[m l ^ey \bf•jm ^h\`bg jbk LhqdZ H gZab\Z}lvky ihexkhf ijhf•gv Hp – iheyjghx
\•kkx Dj•f lh]h ijb aZ^Zgg• iheyjgh€ kbkl_fb ih\bggh [mlb kdZaZgh yd• ih\hjhlb ^h\dheZ lhqdb H \\Z`Zxlvky ^h^Zlgbfb gZ dj_ke_ggyo aZa\bqZc ^h^Zlgbfb \\Z`Zxlvky ih\hjhlb ijhlb ]h^bggbdh\h€ klj•edb
Jbk 6
G_oZc F – \•^ ihexkZ • dml ^h gZijyfm HF
^h\•evgZ lhqdZ iehsbgb IhagZqbfh q_j_a ρ • ϕ €€ \•^klZgv \•^e•qm\Zgbc \•^ iheyjgh€ \•k• ijhlb ]h^bggbdh\h€ klj•edb P• qbkeZ gZab\Zxlvky iheyjgbfb dhhj^bgZlZfb lhqdb F,
12
ijbqhfm \_ebqbgZ ρ gZab\Z}lvky iheyjgbf jZ^•mkhf Z ϕ – iheyjgbf dmlhf lhqdb F AZ k\h€f \bagZq_ggyf \_ebqbgZ ρ ^h^ZlgZ AZ^Zggy iZjb qbk_e (ρ, ϕ) h^ghagZqgh \bagZqZ} lhqdm F gZ iehsbg• Ydsh h[f_`blb af•gm dmlZ ϕ f_`Zfb ≤ ϕ ≤ 2π Z[h - π ≤ ϕ ≤ π lh • gZ\iZdb dh`g•c lhqp• gZ iehsbg• \•^ih\•^Z} iZjZ qbk_e ρ, ϕ).
<bdexq_ggyf } l•evdb ihexk O ^ey ydh]h ρ = 0 Z dml ϕ g_\bagZq_gbc
Ydsh h[jZlb ^_dZjlh\m kbkl_fm dhhj^bgZl lZdbf qbghf sh[ €€ ihqZlhd H ki•\iZ\ a ihexkhf iheyjgh€ kbkl_fb Z \•kv Ox – a iheyjghx \•kkx Hp lh f•` iheyjgbfb dhhj^bgZlZfb ρ, ϕ • ^_dZjlh\bfb dhhj^bgZlZfb x,y)
dh`gh€ lhqdb F •kgm} gZklmigbc a\¶yahd jbk
x = ρ cosϕ, y = ρ sinϕ |
(1.4) |
|
ρ = [ + \ , WJϕ = |
\ |
(1.5) |
|
||
[ |
|
|
Jbk 1.7
A pbo nhjfme \bieb\Z} sh
FRV ϕ = |
[ |
, VLQ ϕ = |
\ |
. |
(1.6) |
|
[ + \ |
[ + \ |
|||||
|
|
|
|
HklZggy a nhjfme \bagZqZ} ^\Z dmlZ ϕ lZ ϕ + π \ f_`Zo \•^ ^h 2π). Nhjfmeb mlhqgxxlv ydbc a pbo dml•\ ke•^ \b[jZlb
I_j_\Z]b dhfiZdlg•klv fh`eb\•klv h[qbke_ggy agZq_ggy nmgdp•€ ijb ^h\•evghfm agZq_gg• Zj]mf_glm a h[eZkl• •kgm\Zggy fh`eb\•klv aZklhkm\Zggy ^h ^Zgh€ nmgdp•€ ZiZjZlm fZl_fZlbqgh]h ZgZe•am aZ\^ydb lhfm sh nhjfmeZ f•klblv ohq • \ ijboh\Zghfm \b]ey^• \k• \•^hfhkl• ijh nmgdp•x
G_^he•db g_^hklZlgy gZhqg•klv q_j_a l_ sh ^Zg• ijh nmgdp•x nhjfmeZ f•klblv m ijboh\Zghfm \b]ey^• • m \biZ^dm kdeZ^gbo nhjfme ^hkblv \Z`dh \by\blb \k• €€ \eZklb\hkl• dj•f lh]h g_h[o•^gh \bdhgm\Zlb ^m`_ ]jhf•a^d• h[qbke_ggy
13
IjbdeZ^ 4 IjhlZ[mex\Zlb gZ •gl_j\Ze• ≤ ϕ ≤ 2π nmgdp•x sh aZ^ZgZ \ iheyjgbo dhhj^bgZlZo ρ = Aϕ (ki•jZev :jo•f_^Z ^ey ljvho agZq_gv dh_n•p•}glm :: :1=1; :2=2; :3=3
lZ ih[m^m\Zlb ljb ]jZn•db p•}€ nmgdp•€ ^ey j•agbo dh_n•p•}gl•\ \ h^g•c ^_dZjlh\•c kbkl_f• dhhj^bgZl
Jha\¶yahd. LZ[mex\Zggy nmgdp•c Ijhp_k lZ[mex\Zggy nmgdp•c h^gZdh\bc ^ey h[ho lZ[ebqgbo ijhp_khj•\
Ih-i_jr_ g_h[o•^gh kl\hjblb lZ[ebpx agZq_gv nmgdp•€ \ iheyjgbo dhhj^bgZlZo a h^gbf •a dh_n•p•}gl•\ gZijbdeZ^ ρ = A1ϕ gZ aZ^Zghfm •gl_j\Ze• ≤ ϕ ≤ 2π a djhdhf h = π/8 djhd
h[bjZ}lvky ^h\•evgh >hp•evgh \bdhjbklh\m\Zlb Kihk•[ aZih\g_ggy dhf•jhd qe_gZfb Zjbnf_lbqgh€ ijh]j_k•€ ydbc hibkZgh m ijbdeZ^• NhjfmeZ h[qbke_ggy agZq_ggy nmgdp•€ %$ ^_ $B$1 – p_ Z[khexlg_ ihkbeZggy gZ dhf•jdm ydZ f•klblv agZq_ggy dh_n•p•}glm :; A8 – \•^ghkg_ ihkbeZggy gZ dhf•jdm ydZ f•klblv agZq_ggy ϕ.
Ih-^jm]_ ^Zg• ^ey ih[m^h\b ]jZn•dm fZxlv [mlb ij_^klZ\e_g• \ ^_dZjlh\•c kbkl_f• dhhj^bgZl – ihlj•[gh knhjfm\Zlb lZ[ebp• agZq_gv [ lZ \ agZq_ggy Zj]mf_glm • nmgdp•€ \
^_dZjlh\bo dhhj^bgZlZo ^ey dh_n•p•}glm :1 >ey pvh]h ke•^ \bdhjbklZlb nhjfmeb
x = ρ cosϕ, y = ρ sinϕ.
Hl`_ agZq_ggy o lZ m ijb i_j_\_^_gg• a iheyjgh€ kbkl_fb dhhj^bgZl ^h ^_dZjlh\h€ h[qbkexxlvky aZ lZdbfb nhjfmeZfb \•^ih\•^gh
K&26$
K6,1$
LZdbf qbghf aZ ^hihfh]hx nhjfme i_j_\_^_ggy \ ^_dZjlh\m kbkl_fm dhhj^bgZl hljbfZgZ lZ[ebpy agZq_gv x lZ y jbk
Jbk 8
14
:gZeh]•qgh [m^mxlvky lZ[ebp• agZq_gv ^ey x lZ y ^ey dh_n•p•}gl•\ :2 lZ :3 jbk
Jbk 9
Ih[m^h\Z ]jZn•d•\ nmgdp•c Ke•^ ih[m^m\Zlb ]jZn•d nmgdp•€ ^ey h^gh]h a dh_n•- p•}gl•\ gZijbdeZ^ ρ = A1ϕ lZd yd hibkZgh \ ihi_j_^gvhfm aZ\^Zgg• Ze_ gZ RZ]_ 2
FZkl_jZ ^bZ]jZff MS Excel RZ]_ Calc) ^h^Zxlvky s_ jy^b ^Zgbo
=jZn•db nmgdp•€ sh aZ^ZgZ \ iheyjgbo dhhj^bgZlZo ρ = Aϕ (ki•jZev :jo•f_^Z ^ey ljvho agZq_gv dh_n•p•}glm :: :1=1; :2=2; :3 \ h^g•c ^_dZjlh\•c kbkl_f• dhhj^bgZl ij_^- klZ\e_g• gZ jbk
|
Ki•jZev :jo•f_^Z |
|
||
10 |
|
|
|
|
y |
|
|
|
|
5 |
|
|
|
|
0 |
|
|
|
|
-5 |
|
|
|
|
-10 |
|
|
|
|
-15 |
|
|
|
|
|
|
|
|
x |
-20 |
|
|
|
|
-15 -10 -5 |
0 |
5 |
10 |
15 20 25 |
|
|
A1= 1 |
A2= 2 |
A3= 3 |
Z MS Excel |
|
[ &DOF |
|
|
Jbk 10 |
|
|
|
|
15
QBK?EVG1 F?LH>B JHA<¶YA:GGY G?E1G1CGBO J1<GYGV
A H>G1/X AF1GGHX
J•\gyggy a h^g•}x af•gghx dhj_g• j•\gyggy. :e]_[jZ€qg• lZ ljZgkp_g^_glg• nmgdp•€. E•g•cg• lZ g_e•g•cg• j•\gyggy. Jha\¶yaZggy g_e•g•cgbo j•\gygv a h^g•}x af•gghx. Jha\¶yaZggy j•\gygv aZ ^hihfh]hx ]jZn•d•\. GZ[eb`_g_ h[qbke_ggy ^•ckgbo dhj_g•\ j•\gyggy. <•^hdj_fe_ggy dhj_g•\. Mlhqg_ggy dhj_g•\.
J•\gyggy a h^g•}x af•gghx dhj_g• j•\gyggy
J•\gyggy a h^g•}x af•gghx Ki•\\•^ghr_ggy \b]ey^m
f (– x) = 0, |
(2.1) |
^_ f (– x) – i_\gbc ZgZe•lbqgbc \bjZa ydbc ih^Z} ZgZe•lbqgh ^_ydm nmgdp•x y = = f (– x) gZab\Z}lvky j•\gyggyf a h^g•}x af•gghx.
Dhj_g• j•\gyggy L• agZq_ggy af•ggh€ x ijb ydbo nmgdp•y y = f(– x) ^hj•\- gx} gmex lh[lh lZd• sh f (– x) = 0 } jha\¶yadZfb j•\gyggy • gZab\Zxlvky dhj_gyfb j•\gyggy Z[h gmeyfb nmgdp•€ f (– x).
Jha\¶yaZlb j•\gyggy hagZqZ} agZclb \k• ch]h dhj_g• Z[h ^h\_klb sh €o g_ •kgm}
<\Z`Zlbf_fh sh \bjZa f (– x) fZ} kfbke ydsh •kgm} shgZcf_gr_ h^g_ ^•ckg_ qbkeh ^ey ydh]h p_c \bjZa fh`gZ h[qbkeblb
J•\gyggy \•^ghkylvky ^h lh]h qb •grh]h deZkm aZe_`gh \•^ lh]h ydhx } nmgdp•y y =
:e]_[jZ€qg• lZ ljZgkp_g^_glg• nmgdp•€
Nmgdp•€ ih^•eyxlvky gZ Ze]_[jZ€qg• • ljZgkp_g^_glg•.
:e]_[jZ€qg• nmgdp•€ >h Ze]_[jZ€qgbo nmgdp•€ \•^ghkylvky nmgdp•€ gZ- klmigh]h \b]ey^m
1. P•eZ jZp•hgZevgZ nmgdp•y Z[h fgh]hqe_g (ihe•ghf) y = a0xn + a1xn-1 + a2xn-2 +…+ a nxn,
an – klZe• qbkeZ sh gZab\Zxlvky dh_n•p•}glZfb n – p•e_ g_\•^¶}fg_ qbkeh yd_ gZab\Zxlv kl_i_g_f fgh]hqe_gm
GZijbdeZ^ nmgdp•€
– 5 x2 + 2x – 3 – fgh]hqe_g q_l\_jlh]h klmi_gy } p•ebfb jZp•hgZevgbfb nmgdp•yfb
Ydsh n h^_j`m}fh nmgdp•x y = a0x + a1 ydm gZab\Zxlv e•g•cghx
nmgdp•}x AZa\bqZc e•g•cgm nmgdp•x ibrmlv •gZdr_ Z kZf_ y = ax + b.
Nmgdp•€ \ = − [ + , \ = [ + – e•g•cg•
2. >jh[h\h-jZp•hgZevgZ nmgdp•y Py nmgdp•y \bagZqZ}lvky yd \•^ghr_ggy ^\ho fgh]hqe_g•\
16
\ = |
D [Q + D [Q− + D [Q− + + DQ |
, |
||||||
E [P + E [P− + E [P− + |
|
+ E |
||||||
|
|
|
|
|
|
P |
|
|
^_ D D D D3 , E E E E2 – |
dh_n•p•}glb n, m – kl_i_g• fgh]hqe_g•\ |
|||||||
GZijbdeZ^ nmgdp•y \ = |
|
− [ |
+ [ |
+ |
|
} ^jh[h\h-jZp•hgZev- |
||
|
+ [ + |
|||||||
|
|
|
[ − [ |
+ [ |
|
|||
ghx nmgdp•}x
3. 1jjZp•hgZevgZ nmgdp•y Ydsh \ nhjfme• y = f (x) \ ijZ\•c qZklbg•
\bdhgmxlvky hi_jZp•€ ^h^Z\Zggy \•^g•fZggy fgh`_ggy ^•e_ggy lZ a\_^_ggy ^h kl_i_gy a jZp•hgZevgbfb g_p•ebfb ihdZagbdZfb lh nmgdp•y gZab\Z}lvky •jjZp•hgZevghx.
IjbdeZ^b •jjZp•hgZevgbo nmgdp•c |
\ = [ + [ ; |
\ = [ + [ + . |
|
+ [ |
[ + [ |
LjZgkp_g^_glg• nmgdp•€ Nmgdp•y ydZ g_ y\ey}lvky Ze]_[jZ€qghx gZab-
\Z}lvky ljZgkp_g^_glghx.
LZdbfb } ihdZagbdh\• eh]Zjbnf•qg• ljb]hghf_ljbqg• h[_jg_g• ljb]h-
ghf_ljbqg• nmgdp•€ lZ nmgdp•€ ^h kdeZ^m ydbo \oh^ylv \bs_ i_j_e•q_g• GZijbdeZ^ nmgdp•€ y = cos2x, y = 3x + 1, y = lg x + 2tg x, y = ln x - x + 3sin x –
ljZgkp_g^_glg•
E•g•cg• lZ g_e•g•cg• j•\gyggy
E•g•cg• j•\gyggy J•\gyggy f (x gZab\Z}lvky e•g•cgbf ydsh nmgdp•y y = f (x) – e•g•cgZ
E•g•cg_ j•\gyggy ax + b = 0
fZ} h^bg jha\¶yahd dhj•gv [ = − E ydsh D ¹ ;
g_ fZ} jha\¶yad•\ ydsh D = , |
D |
|
|
E ¹ ; |
|
||
fZ} [_ae•q jha\¶yad•\ ydsh D = , E = . |
|
||
G_e•g•cg• j•\gyggy J•\gyggy f (x |
gZab\Z}lvky g_e•g•cgbf |
ydsh |
|
nmgdp•y y = f (x) – |
g_e•g•cgZ |
|
|
G_e•g•cg_ |
j•\gyggy gZab\Z}lvky |
Ze]_[jZ€qgbf ydsh nmgdp•y |
f (x) |
} Ze]_[jZ€qghx p•ehx jZp•hgZevghx ^jh[h\h-jZp•hgZevghx •jjZp•hgZev- ghx
Ydsh nmgdp•y f (x g_ Ze]_[jZ€qgZ lh j•\gyggy f (x gZab\Z}lvky ljZgkp_g^_glgbf.
17
GZ\_^_fh ijbdeZ^b j•\gygv |
|
} p•ebf jZp•hgZevgbf Ze]_[jZ€qgbf |
lhfm |
|||||||||||||||||
∙ j•\gyggy [ |
|
|
+ [ − |
= [ |
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
sh nmgdp•y I [ = [ |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
+ [ − − [ |
} p•ehx jZp•hgZevghx |
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
∙ j•\gyggy |
[ + = [ + } ^jh[h\h-jZp•hgZevgbf Ze]_[jZ€qgbf |
|||||||||||||||||||
|
|
|
|
|
|
[ + |
|
|
|
|
|
|
|
|
|
|||||
lhfm sh nmgdp•y |
I [ = |
[ + |
− [ − – ^jh[h\h-jZp•hgZevgZ |
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
[ + |
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
[ − = [ } Ze]_[jZ€qgbf •jjZp•hgZevgbf |
|
||||||||||
∙ j•\gyggy |
|
|
[ − + |
|
lhfm |
|||||||||||||||
sh nmgdp•y I [ = |
|
[ − + |
[ − − [ – •jjZp•hgZevgZ |
|
||||||||||||||||
∙ j•\gyggy OJ[ + [ − = [ − [ OJ } ljZgkp_g^_glgbf lhfm sh ^h |
||||||||||||||||||||
kdeZ^m nmgdp•€ |
I [ = OJ [ + [ − − [ + [ OJ \oh^ylv ljZgkp_g^_glg• |
\•^- |
||||||||||||||||||
ghkgh x nmgdp•€ 2x, |
OJ[ + [ − . |
|
|
|
||||||||||||||||
Jha\¶yaZggy g_e•g•cgbo j•\gygv a h^g•}x af•gghx
AgZclb lhqg• dhj_g• g_e•g•cgbo j•\gygv gZ `Zev fh`gZ ebr_ \ qZkldh- \bo \biZ^dZo •kgm} g_ lZd [Z]Zlh j•\gygv yd• fZxlv lhqgbc jha\¶yahd
>ey Ze]_[jZ€qgbo j•\gygv [meh ^h\_^_gh sh g•yd_ aZ]Zevg_ j•\gyggy kl_i_gy \bs_ g•` g_ fh`gZ jha\¶yaZlb Ze]_[jZ€qgh lh[lh aZ ^hihfh]hx
Ze]_[jZ€qgbo hi_jZp•c ^h^Z\Zggy \•^g•fZggy fgh`_ggy ^•e_ggy i•^g_k_ggy ^h kl_i_gy ^h[mlly dhj_gy 3.
Ijb jha\¶yaZgg• [•evrhkl• ljZgkp_g^_glgbo j•\gygv lZdh` g_ fh`gZ agZclb lhqg• dhj_g•
< lZdbo \biZ^dZo rmdZxlv gZ[eb`_gbc jha\¶yahd lh[lh qbkeh yd_ ^m`_ fZeh \•^j•agy}lvky \•^ •klbggh]h lhqgh]h jha\¶yadm dhj_gy
Jha\¶yaZggy j•\gygv aZ ^hihfh]hx ]jZn•d•\
Ydsh g_ ihlj•[gZ \_ebdZ lhqg•klv lh dhj_g• j•agbo j•\gygv fh`gZ agZclb aZ ^hihfh]hx ]jZn•d•\ nmgdp•c
Kihk•[ <k• qe_gb j•\gyggy i_j_ghkylv \ ch]h e•\m qZklbgm ijZ\Z qZ- klbgZ ijb pvhfm ^hj•\gx} gmex ihagZqZxlv e•\m qZklbgm q_j_a f (x • lh^• j•\- gyggy ijbcfZ} \b]ey^ f (x I•key pvh]h [m^mxlv ]jZn•d nmgdp•€ y = f (x ^_
3 P_ ^h\•\ \ j njZgpmavdbc fZl_fZlbd =ZemZ
18
f (x e•\Z qZklbgZ j•\gyggy :[kpbkb lhqhd i_j_lbgm pvh]h ]jZn•dZ a \•kkx Ox
• [m^mlv dhj_gyfb j•\gyggy lhfm sh m pbo lhqdZo y = 0.
Kihk•[ Qe_gb j•\gyggy jha[b\Zxlv gZ ^\• ]jmib h^gm a gbo aZibkmxlv \ e•\•c qZklbg• j•\gyggy Z •grm – \ ijZ\•c J•\gyggy ijbcfZ} \b]ey^ f1 (x) = f2 (x I•key pvh]h [m^mxlv ]jZn•db ^\ho nmgdp•c y = f1 (x lZ y = f2 (x Dhj_gyfb ^Zgh]h j•\gyggy [m^mlv Z[kpbkb lhqhd i_j_lbgm pbo ]jZn•d•\ LZd ydsh lhqdZ i_j_lbgm ]jZn•d•\ [m^_ fZlb Z[kpbkm x0 lh \ p•c lhqp• hj^bgZlb ]jZn•d•\ f•` kh[hx j•\g• • lh^• f1 (x0) = f2 (x0 Py j•\g•klv ihdZam} sh x0 – dhj•gv j•\gyggy
GZ[eb`_g_ h[qbke_ggy ^•ckgbo dhj_g•\ j•\gyggy
AZ^ZqZ gZ[eb`_gh]h h[qbke_ggy ^•ckgbo dhj_g•\ j•\gyggy f (x) = k aZ- ^Zghx lhqg•klx kdeZ^Z}lvky a ^\ho _lZi•\
1. \•^hdj_fe_ggy dhj_g•\ lh[lh \bagZq_ggy •gl_j\Ze•\ \ k_j_^bg•
ydbo agZoh^blvky ebr_ h^bg dhj•gv lZdbc •gl_j\Ze gZab\Z}lvky •gl_j\Zehf •aheyp•€ dhj_gy;
2. mlhqg_ggy dh`gh]h dhj_gy lh[lh ihke•^h\g_ a\m`_ggy \•^ih- \•^gh]h •gl_j\Zem •aheyp•€ dhj_gy ^h aZ[_ai_q_ggy aZ^Zgh€ lhqghkl•
<•^hdj_fe_ggy dhj_g•\
<•^hdj_fe_ggy dhj_g•\ j•\gyggy f (x [Zam}lvky gZ \•^hf•c l_hj_f•
sh kl\_j^`m} ydsh g_i_j_j\gZ nmgdp•y f (x gZ d•gpyo \•^j•adm >a, b@ fZ} agZq_ggy j•agbo agZd•\ lh[lh f (a) f(b) < lh \ pvhfm ijhf•`dm f•klblvky
ohqZ [ h^bg dhj•gv : ydsh \•^hfh sh nmgdp•y fhghlhggZ gZ pvhfm \•^j•adm lh[lh i_jrZ iho•^gZ nmgdp•€ f’ (x a[_j•]Z} agZd \ k_j_^bg• \•^j•adm lh gZ pvhfm \•^j•adm agZoh^blvky l•evdb h^bg dhj•gv.
Hl`_ ^ey agZoh^`_ggy •gl_j\Ze•\ •aheyp•€ dhj_g•\ j•\gyggy h[bjZ-
xlv ^_ydbc ^•ZiZahg ^_ fh`mlv [mlb dhj_g• lZ lZ[mexxlv nmgdp•x gZ pvhfm
^•ZiZahg• a h[jZgbf djhdhf K ^ey agZoh^`_ggy •gl_j\Zem gZ ydhfm a^•ckgx- }lvky af•gZ agZd•\ nmgdp•€ f (x lh[lh \bdhgm}lvky g_j•\g•klv f (x) f(x + h) < 0.

IjbdeZ^ 5. <bagZqblb •gl_j\Zeb •aheyp•€ dhj_g•\ j•\gyggy x2 - cos x = 0.
Jha\¶yahd AZ^ZgZ nmgdp•y \bagZq_gZ ijb \k•o ^•ckgbo agZq_ggyo x.
>ey \bagZq_ggy •gl_j\Ze•\ •aheyp•€ dhj_g•\ j•\gyggy ihlj•[gh h[jZlb ^_ydbc ^•ZiZahg ^_ fh`mlv [mlb dhj_g• >ey pvh]h fh`_ [mlb \bdhjbklZgbc Kihk•[ =jZn•qgh]h jha\¶yaZggy j•\gygv I_j_l\hjx}fh j•\gyggy ^h \b]ey^m x2 = cos x lZ ih[m^m}fh ]jZn•db nmgdp•c y = x2 lZ y = cos x jbk
19
Jbk 1
A jbk \b^gh sh ]jZn•db nmgdp•c y = x2 lZ y = cos x i_j_lbgZxlvky \ ^\ho lhqdZo Z[kpbkb pbo lhqhd } dhj_gyfb j•\gyggy x2 - cos x b gZe_`Zlv ijhf•`dZf > - @ lZ > @
H[qbkebfh f ( - x): f ( - x) = ( - x)2 - cos( - x) = x2 - cosx = f (x) Hl`_ nmgdp•y iZjgZ
lh^• dhj_g• jhalZrh\Zg• gZ \•k• Z[kpbk kbf_ljbqgh \•^ghkgh ihqZldm dhhj^bgZl Lhfm [m^_fh rmdZlb l•evdb ^h^Zlgbc dhj•gv
H^gZd ^ey qbk_evgh]h jha\¶yaZggy g_e•g•cgh]h j•\gyggy aZkh[Zfb _e_dljhggbo lZ[ebpv ke•^ a\mablb •gl_j\Zeb •aheyp•€ dhj_g•\ P_ ^hihfh`_ af_grblb d•evd•klv
h[qbke_gv <•avf_fh •gl_j\Ze > @ lZ \•^hdj_fbfh gZ gvhfm dhj•gv >ey pvh]h ijhlZ[mex}fh nmgdp•x f (x) = x2 - cos x gZ •gl_j\Ze• > @ a djhdhf h = 0,1 Kihkh[hf
LZ[mex\Zggy nmgdp•€.
>ey i_j_\•jdb g_j•\ghkl• f (x) f(x + h) < \ dhf•jdm K \\_^_fh nhjfmem ^ey MS Excel ?KEB B10*B11<0;"!!!";"") ^ey OO Calc ,) % % lZ ijhly]g_fh aZ fZjd_j aZiheg_gby ^h dhf•jdb K jbk
Jbk 2
;Zqbfh sh nmgdp•y af•gbeZ agZd gZ •gl_j\Ze• [0,8; 0,9] hl`_ ^h^Zlgbc dhj•gv gZe_`blv pvhfm •gl_j\Zem Lh^• \•^ }fgbc dhj•gv gZe_`blv •gl_j\Zem [-0,9; -0,8].
Mlhqg_ggy dhj_g•\
Ijb mlhqg_gg• dhj_gy gZ agZc^_ghfm •gl_j\Ze• g_ kih^•\Zcl_ky g•dheb agZclb lhqg_ agZq_ggy • ^hky]lb i_j_l\hj_ggy nmgdp•€ gZ gmev ijb \bdhjb-
klZgg• dZevdmeylhjZ Z[h dhfi xl_jZ ^_ kZf• qbkeZ ij_^klZ\e_g• h[f_`_ghx d•evd•klx agZd•\
20
