Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
история ин.деятельности.doc
Скачиваний:
34
Добавлен:
14.02.2015
Размер:
454.14 Кб
Скачать

Принцип действия атомных энергетических установок

К энергетической установке судна с атомным двигателем относятся реактор, парогенератор и турбинная установка, приводящая в движение судовой движитель. Реактор - это установка для получения ядерных цепных реакций, во время которых возникает энергия, преобразуемая далее в механическую. Принцип действия ядерного реактора показан на рисунке 8.

Принцип действия ядерного реактора

Известно, что энергия, выделяемая при использовании 1 кг урана, примерно равна энергии, получаемой при сгорании 1500 тонн мазута. Сердцем ядерной установки является реактор: в нем осуществляется управляемая ядерная реакция, в результате которой образуется тепло, отводимое с помощью теплоносителя - воды. Радиоактивная вода-теплоноситель перекачивается в парогенератор, где за счет ее тепла происходит образование пара из не радиоактивной воды. Пар направляется на диски турбин, которые приводят во вращение турбогенераторы, работающие на гребные электродвигатели, а последние вращают гребные винты. Отработавший пар направляется в конденсатор, где он снова превращается в воду и нагнетается в парогенератор. Принцип действия атомной энергетической установки показан на рисунке 9.

схема атомной энергетической установки с реактором, охлаждаемым водой под давлением

Большое внимание уделяется безопасности эксплуатации ядерной установки, так как находящиеся на судне люди в какой-то мере подвержены опасности радиоактивного облучения, поэтому ядерный реактор изолирован от окружающей среды защитным экраном, не пропускающим вредные радиоактивные лучи. Обычно применяются двойные экраны. Первичный экран окружает реактор и изготовляется из свинцовых пластин с полиэтиленовым покрытием и из бетона. Вторичный экран окружает парогенератор и заключает внутри себя весь первый контур высокого давления. Этот экран в основном изготовляют из бетона толщиной от 500 мм до 1095 мм, а также из свинцовых пластин толщиной 200 мал и полиэтилена толщиной 100 мм. Оба экрана требуют много места и имеют очень большую массу. Наличие таких экранов является большим недостатком атомных энергетических установок. Расположение атомной энергетической установки на судна показано на рисунке 10. Другим, еще более существенным недостатком, является, несмотря на все защитные меры, опасность заражения окружающей среды как во время нормального функционирования энергетической установки вследствие отходов использованного топлива, выпуска трюмной воды из реакторного отсека и т. д., так и во время случайных аварий судна и атомной энергетической установки.

ядерная энергетическая установка на судне

Альтернативные энергетические установки

принцип действия двигателя Стерлинга

Еще до второй мировой войны кораблестроителями предпринимались попытки создать для подводных лодок некую альтернативу дизель-электрической энергетической установке - так называемый единый двигатель для надводного и подводного хода. По разным причинам в то время все эти попытки не вышли из стадии экспериментов, но уже в 1960-х годах к ним снова вернулись. Это было вызвано сразу несколькими причинами. Во-первых, Балтийское море объявлено безъядерной зоной, что подразумевает отсутствие у прибалтийских стран кораблей с ядерными силовыми установками. Во-вторых, по политическим мотивам такие военные корабли не могут находиться на вооружении Германия и Япония. В-третьих, строительство и эксплуатационное обслуживание атомных подводных лодок для многих стран не по карману. Наиболее продуктивно над созданием единого не ядерного двигателя работали в Швеции, Нидерландах, Великобритании и Германии.

Но вместе с тем для некоторых типов судов электродвигатель является единственно приемлемым. Это суда с частой сменой режимов нагрузки гребной установки, корабли, требующие повышенных маневровых качеств, длительное время работающие с пониженной мощностью. Такими судами являются ледоколы, буксиры, паромы, китобойные суда, драгеры и некоторые другие.

Двигатель Стерлинга представляет собой тепловой поршневой двигатель с внешним подводом теплоты, в замкнутом объеме которого циркулирует постоянное рабочее тепло (газ), нагреваемое от внешнего источника тепла и совершающее полезную работу за счет своего расширения. Принцип действия двигателя Стерлинга показан на рисунке 11.

В отличие от двигателя внутреннего сгорания двигатель Стерлинга имеет в цилиндре две переменные по объему полости - горячую и холодную. Рабочее тело сжимается в холодной полости и поступает в горячую, затем после нагрева газ движется в обратном направлении и поступает в холодную полость, где, расширяясь, производит полезную работу. Такое двустороннее движение газа обеспечивается наличием двух поршней в каждом цилиндре: поршня-вытеснителя, регулирующего перетекание газа, и рабочего поршня, совершающего полезную работу. Объем горячей полости и верхней части цилиндра регулируется поршнем-вытеснителем, а объем холодной полости, находящейся между обоими поршнями, - их совместным перемещением. Оба поршня связаны механически и совершают согласованное движение, обеспечиваемое специальным механизмом, одновременно заменяющим кривошипно-шатунный механизм.

При работе двигателя можно выделить четыре основных последовательных положения поршней, определяющих рабочий цикл двигателя:  а) - рабочий поршень в крайнем нижнем положении, поршень-вытеснитель - в крайнем верхнем. При этом большая часть газа находится между ними в холодном пространстве (охлаждение); б) - поршень-вытеснитель находится в верхнем положении, а рабочий поршень движется вверх, сжимая холодный газ (сжатие); в) - поршень-вытеснитель движется вниз, приближаясь к рабочему поршню и вытесняя газ в горячую полость (нагревание); г) - горячий газ расширяется, совершая полезную работу воздействием на рабочий поршень (расширение). На пути газа устанавливается регенератор, который отбирает часть тепла при движении через него горячего газа и отдает его при его движении после охлаждения и сжатия в обратную сторону.

Наличие регенератора теоретически позволяет довести КПД двигателя Стерлинга до 70 процентов. Регулирование мощности двигателя достигается изменением количества газа. В качестве рабочего тепла применяются газы с высокими теплотехническими свойствами (водород, гелий, воздух и пр.).

Двигатели Стирлинга обладают следующими уникальными особенностями: - возможностью применения любого источника тепла (жидкого, твердого, газообразного и ядерного топлива, солнечной энергии и т. д.); - работой в большом диапазоне температур при малом перепаде давления сжатия и расширения; - регулированием мощности путем изменения количества рабочего тепла в цикле при неизменных высшей и низшей температурах газа;

Эти особенности обеспечивают двигателю Стерлинга перед другими установками следующие преимущества, как многотопливность и малая токсичность продуктов сгорания топлива; малошумность и хорошая уравновешенность; высокий КПД на режимах малых мощностей. Благодаря этим достоинствам на двигатель и обратили внимание шведские подводники, воплотив идею в реальность на современной подводной лодке типа «Gotland». Но если по своему КПД двигатели Стирлинга соответствуют современным дизелям, то уступают им по мощности. Поэтому они могут использоваться на подводных лодках только как дополнительные двигатели к классической дизель-электрической силовой установке.