
- •З курсу
- •З курсу
- •Содержание
- •Часть I. Инженерные основы программного обеспечения 10
- •Часть II. Требования к программному обеспечению 33
- •Часть III. Моделирование программного обеспечения 52
- •Часть IV. Технологии разработки программного обеспечения 124
- •Часть V. Письменная коммуникация. Документирование проекта Программного обеспечения 145
- •Часть VI. Управление проектом программного обеспечения 192
- •Предисловие
- •Часть I. Инженерные основы программного обеспечения
- •1. Введение в программную инженерию
- •1.1. Вопросы и ответы об инженерии программного обеспечения
- •1.2. Профессиональные и этические требования к специалистам по программному обеспечению
- •2. Системотехника вычислительных систем
- •2.1. Интеграционные свойства систем
- •2.2. Система и ее окружение
- •2.3. Моделирование систем
- •2.4. Процесс создания систем
- •2.5. Приобретение систем
- •3. Процесс создания программного обеспечения
- •3.1. Модели процесса создания программного обеспечения
- •3.2. Итерационные модели разработки программного обеспечения
- •3.3. Спецификация программного обеспечения
- •3.4. Проектирование и реализация программного обеспечения
- •3.5. Эволюция программных систем
- •3.6. Автоматизированные средства разработки программного обеспечения
- •4. Технологии производства программного обеспечения
- •Часть II. Требования к программному обеспечению
- •5. Требования к программному обеспечению
- •5.1. Функциональные и нефункциональные требования
- •5.2. Пользовательские требования
- •5.3. Системные требования
- •5.4. Документирование системных требований
- •6. Разработка требований
- •6.1. Анализ осуществимости
- •6.2. Формирование и анализ требований
- •6.3. Аттестация требований
- •6.4. Управление требованиям
- •7. Матрица требований. Разработка матрицы требований
- •Часть III. Моделирование программного обеспечения
- •8. Архитектурное проектирование
- •8.1. Структурирование системы
- •8.2. Модели управления
- •8.3. Модульная декомпозиция
- •8.4. Проблемно-зависимые архитектуры
- •9. Архитектура распределенных систем
- •9.1. Многопроцессорная архитектура
- •9.2. Архитектура клиент/сервер
- •9.3. Архитектура распределенных объектов
- •9.4. Corba
- •10. Объектно-ориентированное проектирование
- •10.1. Объекты и классы объектов
- •10.2. Процесс объектно-ориентированного проектирования
- •10.2.1. Окружение системы и модели ее использования
- •10.2.2. Проектирование архитектуры
- •10.2.3. Определение объектов
- •10.2.4. Модели архитектуры
- •10.2.5. Специфицирование интерфейсов объектов
- •10.3. Модификация системной архитектуры
- •11. Проектирование систем реального времени
- •11.1. Проектирование систем реального времени
- •11.2. Управляющие программы
- •11.3. Системы наблюдения и управления
- •11.4. Системы сбора данных
- •12. Проектирование с повторным использованием компонентов
- •12.1. Покомпонентная разработка
- •12.2. Семейства приложений
- •12.3. Проектные паттерны
- •13. Проектирование интерфейса пользователя
- •13.1. Принципы проектирования интерфейсов пользователя
- •13.2. Взаимодействие с пользователем
- •13.3. Представление информации
- •13.4. Средства поддержки пользователя
- •13.5. Оценивание интерфейса
- •Часть IV. Технологии разработки программного обеспечения
- •14. Жизненный цикл программного обеспечения: модели и их особенности
- •14.1. Каскадная модель жизненного цикла
- •14.2. Эволюционная модель жизненного цикла
- •14.2.1. Формальная разработка систем
- •14.2.2. Разработка программного обеспечения на основе ранее созданных компонентов
- •14.3. Итерационные модели жизненного цикла
- •14.3.1 Модель пошаговой разработки
- •14.3.2 Спиральная модель разработки
- •15. Методологические основы технологий разработки программного обеспечения
- •16. Методы структурного анализа и проектирования программного обеспечения
- •17. Методы объектно-ориентированного анализа и проектирования программного обеспечения. Язык моделирования uml
- •Часть V. Письменная коммуникация. Документирование проекта Программного обеспечения
- •18. Документирование этапов разработки программного обеспечения
- •19. Планирование проекта
- •19.1 Уточнение содержания и состава работ
- •19.2 Планирование управления содержанием
- •19.3 Планирование организационной структуры
- •19.4 Планирование управления конфигурациями
- •19.5 Планирование управления качеством
- •19.6 Базовое расписание проекта
- •20. Верификация и аттестация программного обеспечения
- •20.1. Планирование верификации и аттестации
- •20.2. Инспектирование программных систем
- •20.3. Автоматический статический анализ программ
- •20.4. Метод "чистая комната"
- •21. Тестирование программного обеспечения
- •21.1. Тестирование дефектов
- •21.1.1. Тестирование методом черного ящика
- •21.1.2. Области эквивалентности
- •21.1.3. Структурное тестирование
- •21.1.4. Тестирование ветвей
- •21.2. Тестирование сборки
- •21.2.1. Нисходящее и восходящее тестирование
- •21.2.2. Тестирование интерфейсов
- •21.2.3. Тестирование с нагрузкой
- •21.3. Тестирование объектно-ориентированных систем
- •21.3.1. Тестирование классов объектов
- •21.3.2. Интеграция объектов
- •21.4. Инструментальные средства тестирования
- •Часть VI. Управление проектом программного обеспечения
- •22. Управление проектами
- •22.1. Процессы управления
- •22.2. Планирование проекта
- •22.3. График работ
- •22.4. Управление рисками
- •23. Управление персоналом
- •23.1. Пределы мышления
- •23.1.1. Организация человеческой памяти
- •23.1.2. Решение задач
- •23.1.3. Мотивация
- •23.2. Групповая работа
- •23.2.1. Создание команды
- •23.2.2. Сплоченность команды
- •23.2.3. Общение в группе
- •23.2.4. Организация группы
- •23.3. Подбор и сохранение персонала
- •23.3.1. Рабочая среда
- •23.4. Модель оценки уровня развития персонала
- •24. Оценка стоимости программного продукта
- •24.1. Производительность
- •24.2. Методы оценивания
- •24.3. Алгоритмическое моделирование стоимости
- •24.3.1. Модель сосомо
- •24.3.2. Алгоритмические модели стоимости в планировании проекта
- •24.4. Продолжительность проекта и наем персонала
- •25. Управление качеством
- •25.1. Обеспечение качества и стандарты
- •25.1.1. Стандарты на техническую документацию
- •25.1.2. Качество процесса создания программного обеспечения и качество программного продукта
- •25.2. Планирование качества
- •25.3. Контроль качества
- •25.3.1. Проверки качества
- •25.4. Измерение показателей программного обеспечения
- •25.4.1. Процесс измерения
- •25.4.2. Показатели программного продукта
- •26. Надежность программного обеспечения
- •26.1. Обеспечение надежности программного обеспечения
- •26.1.1 Критические системы
- •26.1.2. Работоспособность и безотказность
- •26.1.3. Безопасность
- •26.1.4. Защищенность
- •26.2. Аттестация безотказности
- •26.3. Гарантии безопасности
- •26.4. Оценивание защищенности программного обеспечения
- •27. Совершенствование производства программного обеспечения
- •27.1. Качество продукта и производства
- •27.2. Анализ и моделирование производства
- •27.2.1. Исключения в процессе создания по
- •27.3. Измерение производственного процесса
- •27.4. Модель оценки уровня развития
- •27.4.1. Оценивание уровня развития
- •27.5. Классификация процессов совершенствования
26. Надежность программного обеспечения
Известно, что компьютерные системы имеют недостатки, т.е. без явных причин иногда выходят из строя, и не всегда ясно, что требуется для восстановления их работоспособности. Программы, выполняемые на таких компьютерах, работают неверно, порой искажая данные.
Функциональную надежность компьютерных систем можно определить степенью доверия к ним, т.е. уверенностью, что система будет работать так, как предполагается, и что сбоев не будет. Это свойство нельзя оценить количественно. Для этого используются такие относительные термины, как "ненадежные", "очень надежные" или "сверхнадежные", отражающие различную степень доверия к системе.
Надежность и полезность – это, конечно, разные вещи. Программа текстового редактора, является не очень надежной, но весьма полезной системой. Зная это, мы часто сохраняем работу, многократно ее копируя. Этими действиями мы компенсируем недостатки системы, снижая риск потери информации в случае ее отказа.
Существует четыре основные составляющие функциональной надежности программных систем (рис. 26.1):
1. Работоспособность – свойство системы выполнять свои функции в любое время эксплуатации.
2. Безотказность – свойство системы корректно (так, как ожидает пользователь) работать весь заданный период эксплуатации.
3. Безопасность – свойство системы, гарантирующее, что она безопасна для людей и окружающей среды.
4. Защищенность – свойство системы противостоять случайным или намеренным вторжениям в нее.
Рис. 26.1. Составляющие надежности системы
Дополнительные меры, повышающие функциональную надежность системы, могут резко увеличивать стоимость ее разработки. На рис. 26.2 показана зависимость между стоимостью разработки и различными уровнями функциональной надежности. Здесь подразумевается, что функциональная надежность содержит все составляющие: работоспособность, безотказность, безопасность и защищенность. Экспоненциальный характер зависимости "стоимость-надежность" не позволяет говорить о возможности создания систем со стопроцентной надежностью, так как стоимость их создания была бы очень большой.
Рис. 26.2. Зависимость между стоимостью разработки системы
и ее надежностью
Высокие уровни функциональной надежности могут быть достигнуты только за счет уменьшения эффективности работы системы. Например, надежное программное обеспечение предусматривает дополнительные, часто избыточные, коды для проверки нештатных состояний системы. Это усложняет систему и увеличивает объем памяти, необходимый для ее эффективной работы. Но в ряде случаев надежность более важна, чем эффективность системы.
1. Ненадежные системы часто остаются невостребованными. Если к системе нет доверия пользователя, она не будет востребована. Более того, пользователи могут отказаться от других программных продуктов той же компании-разработчика, поскольку будут также считать их ненадежными.
2. Стоимость отказа системы может быть огромна. Для некоторых приложений, таких, как системы управления реакторами или системы навигации, стоимость последствий отказа может превышать стоимость самой системы.
3. Трудно модернизировать ненадежную систему для повышения ее надежности. Обычно есть возможность улучшить неэффективную систему, так как в этом случае основные усилия будут затрачены на модернизацию отдельных программных модулей. Систему, к которой нет доверия, трудно улучшить, поскольку ненадежность "распределена" по всей системе.
4. Существуют возможности компенсировать недостаточную эффективность системы. Если программная система работает неэффективно, то это постоянный фактор, к которому пользователь может приспособиться, построив свою работу с его учетом. Ненадежность системы, как правило, проявляется внезапно. Ненадежное программное обеспечение может нарушить работу всей системы, в которую оно интегрировано, и разрушить данные пользователя без предупреждения, что может иметь серьезные последствия.
5. Ненадежные системы могут быть причиной потери информации. Сбор и хранение данных – дорогостоящая процедура, часто данные стоят больше, чем компьютерная система, на которой они обрабатываются. Дублирование данных для предотвращения их потери вследствие ненадежности системы потребует значительных усилий и финансовых средств.
Надежность системы зависит от технологии разработки ПО. Многократные тестирования с целью исключения ошибок способствуют разработке надежных систем. Однако нет простой связи между качеством процесса создания и качеством готовой системы.