
- •З курсу
- •З курсу
- •Содержание
- •Часть I. Инженерные основы программного обеспечения 10
- •Часть II. Требования к программному обеспечению 33
- •Часть III. Моделирование программного обеспечения 52
- •Часть IV. Технологии разработки программного обеспечения 124
- •Часть V. Письменная коммуникация. Документирование проекта Программного обеспечения 145
- •Часть VI. Управление проектом программного обеспечения 192
- •Предисловие
- •Часть I. Инженерные основы программного обеспечения
- •1. Введение в программную инженерию
- •1.1. Вопросы и ответы об инженерии программного обеспечения
- •1.2. Профессиональные и этические требования к специалистам по программному обеспечению
- •2. Системотехника вычислительных систем
- •2.1. Интеграционные свойства систем
- •2.2. Система и ее окружение
- •2.3. Моделирование систем
- •2.4. Процесс создания систем
- •2.5. Приобретение систем
- •3. Процесс создания программного обеспечения
- •3.1. Модели процесса создания программного обеспечения
- •3.2. Итерационные модели разработки программного обеспечения
- •3.3. Спецификация программного обеспечения
- •3.4. Проектирование и реализация программного обеспечения
- •3.5. Эволюция программных систем
- •3.6. Автоматизированные средства разработки программного обеспечения
- •4. Технологии производства программного обеспечения
- •Часть II. Требования к программному обеспечению
- •5. Требования к программному обеспечению
- •5.1. Функциональные и нефункциональные требования
- •5.2. Пользовательские требования
- •5.3. Системные требования
- •5.4. Документирование системных требований
- •6. Разработка требований
- •6.1. Анализ осуществимости
- •6.2. Формирование и анализ требований
- •6.3. Аттестация требований
- •6.4. Управление требованиям
- •7. Матрица требований. Разработка матрицы требований
- •Часть III. Моделирование программного обеспечения
- •8. Архитектурное проектирование
- •8.1. Структурирование системы
- •8.2. Модели управления
- •8.3. Модульная декомпозиция
- •8.4. Проблемно-зависимые архитектуры
- •9. Архитектура распределенных систем
- •9.1. Многопроцессорная архитектура
- •9.2. Архитектура клиент/сервер
- •9.3. Архитектура распределенных объектов
- •9.4. Corba
- •10. Объектно-ориентированное проектирование
- •10.1. Объекты и классы объектов
- •10.2. Процесс объектно-ориентированного проектирования
- •10.2.1. Окружение системы и модели ее использования
- •10.2.2. Проектирование архитектуры
- •10.2.3. Определение объектов
- •10.2.4. Модели архитектуры
- •10.2.5. Специфицирование интерфейсов объектов
- •10.3. Модификация системной архитектуры
- •11. Проектирование систем реального времени
- •11.1. Проектирование систем реального времени
- •11.2. Управляющие программы
- •11.3. Системы наблюдения и управления
- •11.4. Системы сбора данных
- •12. Проектирование с повторным использованием компонентов
- •12.1. Покомпонентная разработка
- •12.2. Семейства приложений
- •12.3. Проектные паттерны
- •13. Проектирование интерфейса пользователя
- •13.1. Принципы проектирования интерфейсов пользователя
- •13.2. Взаимодействие с пользователем
- •13.3. Представление информации
- •13.4. Средства поддержки пользователя
- •13.5. Оценивание интерфейса
- •Часть IV. Технологии разработки программного обеспечения
- •14. Жизненный цикл программного обеспечения: модели и их особенности
- •14.1. Каскадная модель жизненного цикла
- •14.2. Эволюционная модель жизненного цикла
- •14.2.1. Формальная разработка систем
- •14.2.2. Разработка программного обеспечения на основе ранее созданных компонентов
- •14.3. Итерационные модели жизненного цикла
- •14.3.1 Модель пошаговой разработки
- •14.3.2 Спиральная модель разработки
- •15. Методологические основы технологий разработки программного обеспечения
- •16. Методы структурного анализа и проектирования программного обеспечения
- •17. Методы объектно-ориентированного анализа и проектирования программного обеспечения. Язык моделирования uml
- •Часть V. Письменная коммуникация. Документирование проекта Программного обеспечения
- •18. Документирование этапов разработки программного обеспечения
- •19. Планирование проекта
- •19.1 Уточнение содержания и состава работ
- •19.2 Планирование управления содержанием
- •19.3 Планирование организационной структуры
- •19.4 Планирование управления конфигурациями
- •19.5 Планирование управления качеством
- •19.6 Базовое расписание проекта
- •20. Верификация и аттестация программного обеспечения
- •20.1. Планирование верификации и аттестации
- •20.2. Инспектирование программных систем
- •20.3. Автоматический статический анализ программ
- •20.4. Метод "чистая комната"
- •21. Тестирование программного обеспечения
- •21.1. Тестирование дефектов
- •21.1.1. Тестирование методом черного ящика
- •21.1.2. Области эквивалентности
- •21.1.3. Структурное тестирование
- •21.1.4. Тестирование ветвей
- •21.2. Тестирование сборки
- •21.2.1. Нисходящее и восходящее тестирование
- •21.2.2. Тестирование интерфейсов
- •21.2.3. Тестирование с нагрузкой
- •21.3. Тестирование объектно-ориентированных систем
- •21.3.1. Тестирование классов объектов
- •21.3.2. Интеграция объектов
- •21.4. Инструментальные средства тестирования
- •Часть VI. Управление проектом программного обеспечения
- •22. Управление проектами
- •22.1. Процессы управления
- •22.2. Планирование проекта
- •22.3. График работ
- •22.4. Управление рисками
- •23. Управление персоналом
- •23.1. Пределы мышления
- •23.1.1. Организация человеческой памяти
- •23.1.2. Решение задач
- •23.1.3. Мотивация
- •23.2. Групповая работа
- •23.2.1. Создание команды
- •23.2.2. Сплоченность команды
- •23.2.3. Общение в группе
- •23.2.4. Организация группы
- •23.3. Подбор и сохранение персонала
- •23.3.1. Рабочая среда
- •23.4. Модель оценки уровня развития персонала
- •24. Оценка стоимости программного продукта
- •24.1. Производительность
- •24.2. Методы оценивания
- •24.3. Алгоритмическое моделирование стоимости
- •24.3.1. Модель сосомо
- •24.3.2. Алгоритмические модели стоимости в планировании проекта
- •24.4. Продолжительность проекта и наем персонала
- •25. Управление качеством
- •25.1. Обеспечение качества и стандарты
- •25.1.1. Стандарты на техническую документацию
- •25.1.2. Качество процесса создания программного обеспечения и качество программного продукта
- •25.2. Планирование качества
- •25.3. Контроль качества
- •25.3.1. Проверки качества
- •25.4. Измерение показателей программного обеспечения
- •25.4.1. Процесс измерения
- •25.4.2. Показатели программного продукта
- •26. Надежность программного обеспечения
- •26.1. Обеспечение надежности программного обеспечения
- •26.1.1 Критические системы
- •26.1.2. Работоспособность и безотказность
- •26.1.3. Безопасность
- •26.1.4. Защищенность
- •26.2. Аттестация безотказности
- •26.3. Гарантии безопасности
- •26.4. Оценивание защищенности программного обеспечения
- •27. Совершенствование производства программного обеспечения
- •27.1. Качество продукта и производства
- •27.2. Анализ и моделирование производства
- •27.2.1. Исключения в процессе создания по
- •27.3. Измерение производственного процесса
- •27.4. Модель оценки уровня развития
- •27.4.1. Оценивание уровня развития
- •27.5. Классификация процессов совершенствования
11.1. Проектирование систем реального времени
Как указывалось ранее, в процессе проектирования системы принимаются решения о том, какие свойства будут реализованы программной частью системы, а какие - аппаратными средствами. Временные ограничения и другие требования предполагают, что некоторые функции системы, например обработку сигналов, необходимо реализовать на специально разработанном оборудовании. Таким образом, процесс проектирования систем реального времени включает в себя проектирование оборудования (аппаратуры) специального назначения и проектирование программного обеспечения.
Аппаратные компоненты обеспечивают более высокую производительность, чем эквивалентное им (по выполняемым функциям) программное обеспечение. Аппаратным средствам можно поручить "узкие" места системной обработки сигналов и, таким образом, избежать дорогостоящей оптимизации ПО. Если за производительность системы отвечают аппаратные компоненты, при проектировании ПО основное внимание можно уделить его переносимости, а вопросы, связанные с производительностью, отходят на второй план.
Решения о распределении функций по аппаратным и программным компонентам следует принимать как можно позже, поскольку архитектура системы должна состоять из автономных компонентов, которые можно реализовать как аппаратно, так и программно. Именно такая структура соответствует целям разработчика, проектирующего удобную в обслуживании систему. Следовательно, результатом процесса проектирования высококачественной системы должна быть система, которую можно реализовать и аппаратными и программными средствами.
Отличие процесса проектирования систем реального времени от других систем состоит в том, что уже на первых этапах проектирования необходимо учитывать время реакции системы. В центре процесса проектирования системы реального времени – события (входные сигналы), а не объекты или функции.
Процесс проектирования таких систем состоит из нескольких этапов.
1. Определение множества входных сигналов, которые будут обрабатываться системой, и соответствующих им системных реакций, т.е. ответных сигналов.
2. Для каждого входного сигнала и соответствующего ему ответного сигнала вычисляются временные ограничения. Они применяются к обработке как входных, так и ответных сигналов.
3. Объединение процессов обработки входных и ответных сигналов в виде совокупности параллельных процессов. В корректной модели системной архитектуры каждый процесс связан с определенным классом входных и ответных сигналов (как показано на рис. 11.2).
4. Разработка алгоритмов, выполняющих необходимые вычисления для всех входных и ответных сигналов. Чтобы получить представление об объемах вычислительных и временных затрат в процессе обработки сигналов, разработка алгоритмов обычно проводится на ранних этапах процесса проектирования.
5. Разработка временного графика работы системы.
6. Сборка системы, работающей под управлением диспетчера – управляющей программы.
Конечно, описанный процесс проектирования является итерационным. Как только определена структура вычислительных процессов и временной график работы, необходимо сделать всесторонний анализ и провести имитацию работы системы, чтобы удостовериться в том, что она удовлетворяет временным ограничениям. В результате анализа может обнаружиться, что система не отвечает временным требованиям. В таком случае для повышения производительности системы необходимо изменить структуру вычислительных процессов, алгоритм управления, управляющую программу или все эти компоненты вместе.
В системах реального времени сложно анализировать временные зависимости. Из-за непредсказуемой природы апериодических входных сигналов разработчики вынуждены делать некоторые предварительные предположения относительно вероятности появлений апериодических сигналов. Сделанные предположения могут оказаться неверными, и после разработки системы ее показатели производительности не будут удовлетворять временным требованиям.
Все процессы в системе реального времени должны быть скоординированы. Механизм координации процессов обеспечивает исключение конфликтов при использовании общих ресурсов. Когда один процесс использует общий ресурс (или объект), другие процессы не должны иметь доступ к этому ресурсу. К механизмам, обеспечивающим взаимное исключение процессов, относятся семафоры, мониторы.