
- •Рязань 2009
- •Глава 1. Предел функции
- •1.1. Определение предела
- •1.2. Операции над пределами
- •1.3. Замечательные пределы
- •1.4. Примеры
- •1.5. Варианты заданий
- •1.6. Контрольные вопросы Глава 2. Производная и дифференциал
- •2.1 Понятие производной
- •2.2. Геометрический и физический смысл производной
- •2.3. Таблица производных
- •2.4. Основные правила дифференцирования
- •2.5. Производные высших порядков
- •2.6. Дифференциал функции
- •2.7. Геометрический смысл и свойства дифференциала
- •2.8. Дифференциалы высших порядков
- •2.9. Примеры
- •2.10. Варианты заданий
- •2.11. Контрольные вопросы
- •Глава 3. Исследование функций и построение графиков
- •3.1. Промежутки монотонности и знакопостоянства
- •3.2. Экстремумы функции
- •3.3. Выпуклость и вогнутость функции. Точка перегиба
- •3.4. Асимптоты
- •3.5.Общая схема исследования функции и построение графиков
- •3.6. Примеры
- •3.7. Варианты заданий
- •3.8. Контрольные вопросы
- •Глава 4. Функции нескольких переменных
- •4.1. Определение функции нескольких переменных
- •4.2. Частные производные
- •4.3. Полный дифференциал
- •4.5. Примеры
- •4.6. Варианты заданий
- •4.7. Контрольные вопросы Глава 5. Численное дифференцирование
- •5.1. Формулы для вычисления первой производной
- •5.2. Формулы второй производной
- •5.3. Примеры
- •5.4. Варианты заданий
- •5.5. Контрольные вопросы Глава 6 Основы интерполяции.
- •6.1. Постановка задачи
- •Интерполяционные формулы конечных разностей
- •6.3. Интерполяционные формулы центральных разностей
- •6.4. Интерполирование функции с не равноотстоящими узлами
- •6.5. Варианты заданий
- •6.6. Контрольные вопросы Глава 7. Неопределенный интеграл
- •7.1. Первообразная функция и неопределенный интеграл
- •7.2. Основные свойства неопределенного интеграла
- •7.3. Таблица простейших интегралов
- •7.4. Основные методы интегрирования
- •7.4.1. Непосредственное интегрирование
- •7.4.2. Метод подстановки (замена переменной)
- •7.4.3. Интегрирование по частям
- •7.5. Примеры
- •7.6. Варианты заданий
- •7.7. Контрольные вопросы
- •Глава 8. Определенный интеграл
- •8.1. Основные понятия и свойства определенного интеграла
- •Свойства определенного интеграла
- •8.2. Основные методы интегрирования
- •8.2.1. Формула Ньютона-Лейбница
- •8.2.2. Метод подстановки
- •8.2.3. Интегрирование по частям
- •8.3. Примеры
- •8.4. Варианты заданий
- •8.5. Биологические, физические и медицинские приложения определенного интеграла
- •8.5.1. Примеры задач прикладного характера.
- •8.5.2. Примеры решения задач.
- •8.5.3. Варианты заданий
- •Глава 9. Численное интегрирование
- •9.1. Формула прямоугольников
- •9.2. Формула трапеций
- •9.3. Метод средних
- •9.4. Формула Симпсона
- •9.5. Примеры
- •9.6. Варианты заданий
- •9.7. Контрольные вопросы
- •Глава 10. Дифференциальные уравнения
- •10.1. Основные определения
- •10.2. Уравнения с разделяющимися переменными
- •10.3. Однородные уравнения первого порядка
- •10.4. Линейные уравнения первого порядка
- •9.5. Примеры
- •I. Метод Лагранжа
- •II. Метод Бернулли
- •1) Метод вариации произвольной постоянной
- •2) Метод подстановки
- •10.6. Варианты заданий
- •10.7. Применение дифференциальных уравнений в биологии и медицине.
- •10.8. Варианты заданий
- •10.9. Контрольные вопросы
- •Глава 11. Численные методы решения дифференциальных уравнений
- •11.1. Метод Эйлера
- •10.2. Метод Рунге – Кутта
- •10.3. Примеры
- •11.4. Варианты заданий
- •11.4. Контрольные вопросы
- •Глава 12. Элементы теории вероятностей
- •12.1. Случайное событие
- •12.2. Комбинаторика
- •12.3. Вероятность случайного события
- •Закон сложения вероятностей
- •12.5. Варианты заданий
- •12.6. Условная вероятность, закон умножения вероятностей
- •12.7. Варианты заданий
- •12.8. Формулы полной вероятности и Байеса
- •12.9. Варианты заданий
- •11.10. Формулы Бернулли, Пуассона и Муавра-Лапласа
- •12.11. Варианты заданий
- •12.2. Случайные величины
- •12.2.1. Закон распределения случайной величины
- •12.2.2. Функция распределения случайных величин
- •12.2.3. Числовые характеристики дискретной случайной величины
- •12.2.4. Плотность вероятности непрерывных случайных величин
- •12.2.5. Нормальный закон распределения
- •12.3. Варианты заданий
- •Глава 13. Статистический анализ результатов исследований
- •13.1. Основные понятия математической статистики
- •13.1. Варианты заданий
- •13.2. Статистические оценки параметров распределения. Выборочные характеристики
- •13.2.1. Характеристики положения
- •13.2.2. Характеристики рассеяния вариант вокруг своего среднего
- •13.3. Варианты заданий
- •13.4. Оценка параметров генеральной совокупности по ее выборке
- •13.4.1. Точечная оценка параметров генеральной совокупности
- •13.5. Варианты заданий
- •13.6. Интервальная оценка параметров генеральной совокупности
- •13.7. Варианты заданий
- •1.8. Контрольные вопросы
- •Глава 14. Корреляционный и регрессионный анализ
- •14.1. Функциональная и корреляционная зависимости
- •14.2. Коэффициент линейной корреляции и его свойства
- •14.3. Проверка гипотезы о значимости выборочного коэффициента линейной корреляции
- •14.4. Выборочное уравнение линейной регрессии. Метод наименьших квадратов
- •14.5. Нелинейная регрессия
- •14.6. Варианты заданий
- •Приложение
- •Критические значения выборочного коэффициента корреляции
- •Критерий Колмогорова – Смирнова Точные и асимптотические границы для верхней грани модуля разности истинной и эмпирической функции распределения
- •Распределение Пирсона (х2– распределение)
- •Распределение Фишера – Снедекора (f-распределение)
- •Библиографический список
- •Содержание
- •Глава 13. Статистический анализ результатов исследований 160
- •Глава 14. Корреляционный и регрессионный анализ 180
10.8. Варианты заданий
Скорость укорочения мышцы описывается уравнением
где х0 —полное укорочение мышцы; В — постоянная зависящая от грузки; х — укорочение мышцы в данный момент. Найти закон сокращения мышцы, если в момент времен t=0 величина укорочении мыший была равна 0.
2. Если при прохождении через слой воды толщиной 3 м поглощается половина первоначального количества света, то какая то часть этого количества дойдет до глубины 30 м? Количество света, поглощенного при прохождении через топкий слой воды, пропорционально толщине слоя и количеству света, падающего на его поверхность.
3. Если первоначально количество фермента равно 1 г, а через 1 ч становятся равным 1,2 г, то чему оно будет равно через 5 ч после начала брожения? Скорость прироста фермента считать пропорциональной его наличному количеству.
4. Скорости ферментативных каталитических реакций иногда подсчитываются следующему уравнению:
где х- концентрация продукта в момент времени t: a - начальная концентрация реагента. Найти закон зависимости изменения концентрации продукта от времени.
5. Скорость распада некоторого лекарственного вещества пропорциональна наличному количеству лекарства. Известно, что по истечении 1 ч в организме осталось 31,4 г лекарственного вещества, а по истечении 3 ч – 9,7 г. Определить:
сколько лекарственного вещества было введено в организм:
через сколько времени после введения в организме останется 1% первоначального количества.
6. За 30 дней распалось 50% первоначального количества радиоактивного вещества. Через сколько времени останется 1% от первоначального количества?
Определить период полураспада радия и радона, если постоянные распада данных веществ соответственно равны 1,354·10-11с-1 и 2,1·10-6с-1.
8. Сколько ядер радиоактивного йода 53I131 из каждого миллиарда распадается в 1 с. если период, полураспада 53I131 равен 8 суткам?
9. Счетчик Гейгера, установленный вблизи препарата радиоактивного изотопа серебра, при первом изменении зарегистрировал 5200 (β-частиц в минуту, а через сутки — только 300. Определить период полураспада изотопа.
Имеется 1000 относительных единиц радона. Сколько действующих единиц радона останется спустя 1 ч? Постоянная распада радона λ=2,1·10-6с-1
Определять, какая доля ядер 80Bi210 распадается за 1 ч, если постоянная распада 80Bi210 λ= 1,61·10-6с-1
10.9. Контрольные вопросы
Дайте определение дифференциального уравнения. Математическая запись ДУ. Примеры представления ДУ.
Что такое порядок ДУ? Приведите примеры записи ДУ различных порядков.
Дайте определение решения (интеграла) ДУ, общего решения, частного решения, начальных условий.
В чем состоит задача Коши?
В чем заключается интегрирование ДУ?
Что такое интегральная кривая? Чем отличаются графически общее решение ДУ и частное решение ДУ?
Дайте определение и приведите примеры ДУ с разделяющимися переменными.
Что такое однородная функция степени n?
Дайте определение и приведите примеры однородного ДУ.
Дайте определение линейного ДУ 1-го порядка.
Перечислите и объясните суть методов решений ЛНДУ 1-го порядка.
Приведите примеры применения дифференциальных уравнений в биологии и медицине.