Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции Фейнмана глава6.doc
Скачиваний:
10
Добавлен:
13.02.2015
Размер:
534.02 Кб
Скачать

§ 2. Флуктуации

Теперь мне бы хотелось несколько подробнее показать, как можно использовать идею вероятности, чтобы ответить на во­прос: сколько же в самом деле я ожидаю выпадений «орла», если подбрасываю монету N раз? Однако, прежде чем ответить на него, давайте посмотрим, что все-таки дает нам такой «эк­сперимент». На фиг. 6.1 показаны результаты, полученные в первых трех сериях испытаний по 30 испытаний в каждой.

Фиг. 6.1. Последовательность выпадения «орла» и «решки».

Три серии опытов подбрасывания моне­ты по 30 раз в каждой серии.

Последовательности выпадений «орла» и «решки» показаны в том порядке, как это происходило. В первый раз получилось 11 выпадений «орла», во второй — тоже 11, а в третий — 16. Можно ли на этом основании подозревать, что монета была «не­честной»? Или, может быть, мы ошиблись, приняв 15 за наиболее вероятное число выпадений «орла» в каждой серии испытаний?

Сделаем еще 97 серий, т. е. 100 серий по 30 испытаний в каждой. Результаты их приведены в табл. 6.1.

Таблица б.1 • число выпадений «орла»

Проведено несколько серий испытаний, по 30 подбрасываний монеты в каждой

Взгляните на числа, приведенные в этой таблице. Вы видите, что большинство результатов «близки» к 15, так как почти все они расположены между 12 и 18. Чтобы лучше прочувствовать эти результаты, нарисуем график их распределения. Для этого подсчитаем число испытаний, в которых получилось k выпаде­ний «орла», и отложим это число вверх над k. В результате по­лучим фиг. 6.2.

Вертикальные линии показывают число серий, в которых выпадал k раз «орел». Пунктирная кривая показывает ожидаемое число серий с выпадением k раз «орла», полученное из вычисления вероятностей.

Действительно, в 13 сериях было получено 15 выпадений «орла», то же число серий дало 14 выпадений «орла»; 16 и 17 выпадений получались больше чем 13 раз. Должны ли мы из этого делать вывод, что монетам больше нравится ло­житься «орлом» вверх? А может быть, мы неправы в выборе чис­ла 15 как наиболее правдоподобного? Может быть, в действи­тельности более правдоподобно, что за 30 испытаний получает­ся 16 выпадений «орла»? Минуточку терпения! Если мы сложим вместе результаты всех серий, то общее число испытаний будет 3000, а общее число выпадений «орла» в этих испы­таниях достигает 1492, так что доля испытаний с выпадением «орла» в результате будет 0,497. Это очень близко к половине, но все же несколько меньше. Нет, мы все-таки не можем пред­полагать, что вероятность выпадения «орла» больше, чем 0,5! Тот факт, что в отдельных испытаниях «орел» чаще выпа­дал 16 раз, чем 15, является просто случайным отклонением, или флуктуацией. Мы же по-прежнему ожидаем, что наиболее правдоподобным числом выпадений должно быть 15.

Можно спросить: а какова вероятность того, что в серии из 30 испытаний «орел» выпадет 15 раз или 16, или какое-то дру­гое число раз? Мы говорим, что вероятность выпадения «орла» в серии из одного испытания равна 0,5; соответственно вероят­ность невыпадения тоже равна 0,5. В серии из двух испытаний возможны четыре исхода: ОО, OP, PO, PP. Так как каждый из них равновероятен, то можно заключить: а) вероятность двух выпадений «орла» равна 1/4; б) вероятность одного выпадения «орла» равна 1/4; в) вероятность невыпадения «орла» равна 1/4. Это происходит потому, что существуют две возможности из четырех равных получить одно выпадение «ор­ла» и только одна возможность получить два выпадения или не получить ни одного.

Рассмотрим теперь серию из трех испытаний. Третье испы­тание с равной вероятностью может дать либо «орел», либо «решку», поэтому существует только один способ получения трех выпадений «орла»: мы должны получить два выпадения «орла» в двух первых испытаниях и затем выпадение «орла» в по­следнем. Однако получить два выпадения «орла» можно уже тремя способами: после двух выпадений «орла» может выпасть «решка» и еще два способа — после одного выпадения «орла» в первых двух испытаниях выпадет «орел» в третьем. Так что число равновероятных способов получить 3, 2, 1 и 0 выпадений «орла» будет соответственно равно 1, 3, 3 и 1; полное же число всех возможных способов равно 8. Таким образом, получаются следующие вероятности: 1/8. 3/8, 3/8, 1/8.

Эти результаты удобно записать в виде диаграммы (фиг. 6.3).

Фиг. 6.3. Диаграмма, иллю­стрирующая число различных возможностей получения 0, 1, 2 и 3 выпадений «орла» в серии из трех испытаний.

Ясно, что эту диаграмму можно продолжить, если мы инте­ресуемся еще большим числом испытаний. На фиг. 6.4 приведена аналогичная диаграмма для шести испытаний.

Фиг. 6.4. Диаграмма, подобная изображенной на фиг. 6.3, для серии из шести испытаний.

Число «спо­собов», соответствующих каждой точке диаграммы,— это про­сто число различных «путей» (т. е., попросту говоря, последо­вательность выпадения «орла» и «решки»), которыми можно прийти в эту точку из начальной, не возвращаясь при этом назад, а высота этой точки дает общее число выпадений «орла». Этот набор чисел известен под названием треугольника Паскаля, а сами числа называются биномиальными коэффициентами, поскольку они появляются при разложении выражения +b)n, Обычно эти числа на нашей диаграмме обозначаются символом

(), или Сnk (число сочетаний из n по k), где n — полное число

испытаний, а k — число выпадений «орла». Отмечу попутно, что биномиальные коэффициенты можно вычислять по формуле

(6.4)

где символ п!, называемый «n-факториалом», обозначает про­изведение всех целых чисел от 1 до n, т. е. 1 • 2 • 3 . . . (n-1)•п. Теперь уже все готово для того, чтобы с помощью выражения (6.1) подсчитать вероятность Р (k, n) выпадения k раз «орла»! в серии из n испытаний. Полное число всех возможностей бу­дет 2" (поскольку в каждом испытании возможны два исхода), а число равновероятных комбинаций, в которых выпадет «орел», будет () , так что

(6.5)

Поскольку Р (k, n)доля тех серий испытаний, в кото­рых выпадение «орла» ожидается k раз, то из ста серий k вы­падений «орла» ожидается 100 Р (k, n) раз. Пунктирная кривая на фиг. 6.2 проведена как раз через точки функции 100 Р (k, 30). Видите, мы ожидали получить 15 выпадений «орла» в 14 или 15 сериях испытаний, а получили только в 13. Мы ожидали полу­чить 16 выпадений «орла» в 13 или 14 сериях испытаний, а по­лучили в 16. Но такие флуктуации вполне допускаются «пра­вилами игры».

Использованный здесь метод можно применять и в более об­щей ситуации, где в каждом единичном испытании возможны только два исхода, которые давайте обозначим через В (выигрыш) и П (проигрыш). Вообще говоря, вероятности В и П в каждом отдельном испытании могут быть разными. Пусть р, например, будет вероятностью результата В. Тогда q (вероятность резуль­тата П) должна быть равна (1-р). В серии из n испытаний вероятность того, что результат В получится k раз, равна

(6.6)

Эта функция вероятностей называется биномиальным законом распределения вероятности.