Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции Фейнмана глава9.doc
Скачиваний:
16
Добавлен:
13.02.2015
Размер:
308.74 Кб
Скачать

Глава 9

ДИНАМИЧЕСКИЕ ЗАКОНЫ НЬЮТОНА

§ 1. Импульс и сила

§ 2. Компоненты ско­рости, ускорения и силы

§ 3. Что такое сила?

§ 4. Смысл динами­ческих уравне­ний

§ 5. Численное реше­ние уравнении

§ 6. Движение планет

§ 1. Импульс и сила

Открытие законов динамики или законов движения стало одним из наиболее драмати­ческих моментов в истории науки. До Ньютона движение различных тел, например планет, представлялось загадкой для ученых, но после открытия Ньютона все вдруг сразу стало по­нятно. Смогли быть вычислены даже очень слабые отклонения от законов Кеплера, обус­ловленные влиянием других планет. Движение маятника, колебания груза, подвешенного на пружине, и другие непонятные до того явления раскрыли свои загадки благодаря законам Ньютона. То же самое можно сказать и об этой главе. До нее вы не могли рассчитать, как движется грузик, прикрепленный к пружине, не говоря уже о том, чтобы определить влияние Юпитера и Сатурна на движение Урана. Но после этой главы вам будет доступно и то и дру­гое!

Первый большой шаг в понимании движе­ния был сделан Галилеем, когда он открыл свой принцип инерции: тело, предоставленное самому себе, если на него не действует ника­кая сила, сохраняет свое прямолинейное дви­жение с постоянной скоростью, как двигалось до этого, или остается в покое, если оно до этого покоилось. Конечно, в природе такого не бывает. Попробуйте толкнуть кубик, стоящий на столе. Он остановится. Причина в том, что кубик трется о стол, он не предоставлен са­мому себе. Нужно иметь очень богатое вообра­жение, чтобы увидеть за этим принцип инер­ции.

Естественно нужно еще разрешить следую­щий вопрос: а как изменяется скорость тела, если на него что-то действует? Ответ был дан Ньютоном. Он сформулировал три закона. Первый закон представляет собой просто повторение принципа инерции Галилея. Второй закон говорит о том, как изменяется скорость тела, когда оно испы­тывает различные влияния, т. е. когда на него действуют силы. Третий закон в каком-то смысле описывает силы, но о нем мы поговорим несколько позже. Здесь будет идти речь о Втором законе, согласно которому под действием силы движение тел изменяется следующим образом: скорость изменения со временем некой величины, называемой количеством движения, или импуль­сом, пропорциональна силе. Позднее мы запишем короткую ма­тематическую формулировку этого закона, а сейчас давайте раз­беремся в его содержании.

Импульс и скорость — вещи разные. В физике употребляет­ся много слов, и каждое из них в отличие от обычного разго­ворного языка имеет точный смысл. Примером может служить слово «импульс», и мы должны определить его точно. Толкните слегка рукой какой-нибудь легкий предмет — он тотчас начнет двигаться. Если с такой же силой толкнуть гораздо более тя­желый предмет, то он будет двигаться значительно медленней. В сущности нужно говорить не о «легком» или «тяжелом» пред­мете, а о менее массивном или более массивном, так как между весом и инерцией предмета есть разница, которую нужно пони­мать. (Сколько весит тело — это одно, а насколько трудно разо­гнать его — совсем другое.) Однако на поверхности Земли вес и инерция пропорциональны друг другу и зачастую рассмат­риваются как численно равные. Это часто приводит к непони­манию разницы между ними. На Марсе, например, вес предметов будет отличаться от веса на Земле, но инертность останется той же самой, т. е. потребуется то же количество силы, чтобы пре­одолеть инерцию тела.

Количественной мерой инертности является масса. Ее мож­но измерять так: просто привязать предмет на веревочке, кру­тить его с определенной скоростью и измерять ту силу, которая необходима, чтобы удержать его. Этим способом можно из­мерять массу любых предметов. Импульс — это просто произ­ведение массы тела на его скорость. Теперь можно записать Вто­рой закон Ньютона в математической форме:

F =(d/dt)(mv). (9.1)

Давайте разберем подробнее некоторые его стороны. При напи­сании закона, подобного этому, обычно используется много интуитивных идей; что-то подразумевается, что-то предпола­гается и комбинируется в приближенный «закон». Но после этого необходимо снова вернуться назад и подробно изучить, что означает каждый член. Если же пытаться сделать это с самого начала, то можно безнадежно запутаться. Так что мы считаем некоторые положения само собой разумеющимися и но требующими никакого доказательства. Во-первых, мы считаем, что массы тел постоянны. Это, вообще говоря, неправильно, но мы начнем с ньютоновского приближения, когда масса считается постоянной и не изменяющейся с течением времени. Во-вторых, если сложить вместе два предмета, то масса образовавшегося тела равна сумме их масс. Это положение неявно предполагалось Ньютоном, когда он писал свои уравнения, в противном слу­чае они были бы бессмысленны. Пусть, например, масса изме­няется обратно пропорционально скорости, но тогда импульс никогда бы не изменялся и закон потерял бы всякое содержание, за исключением только того, что вы знаете, как изменяется масса со скоростью. Так что сначала мы считаем массу неизмен­ной.

Несколько слов о силе. В качестве первого грубого при­ближения мы рассматривали силу как некий толчок или тягу, которая может быть произведена с помощью наших мышц, но теперь, пользуясь уравнением движения, мы можем определить ее более точно. Очень важно помнить, что закон Ньютона вклю­чает не только изменение величины импульса, но и изменение его направления. Итак, если масса постоянна, то уравнение (9.1) можно записать в виде

F =m(dv/dt)=ma, (9.2)

где а — ускорение, т. е. «скорость изменения скорости». Вто­рой закон Ньютона означает не только то, что изменения, выз­ванные данной силой, обратно пропорциональны массе, но и то, что направление изменения скорости совпадает с направ­лением действия силы. Важно понимать, что термин «ускорение» имеет в физике более широкий смысл, чем в обычной разговор­ной речи. Он означает не только увеличение скорости, но и за­медление ( в этом случае мы говорим, что ускорение отрицатель­но), и перемену направления движения. В гл. 7 мы уже позна­комились с ускорением, направленным под прямым углом к скорости, и мы видели, что предмет, движущийся по окружнос­ти радиусом R со скоростью v, за малый интервал времени t уклоняется от своего прямого пути на расстояние 1/2(v2/R)t2. Так что в этом случае ускорение направлено под прямым углом к направлению движения и равно

a =v2/R. (9.3)

Таким образом, сила, действующая под прямым углом к скорос­ти, вызывает искривление пути, причем радиус кривизны можно найти, деля силу на массу тела (при этом мы получаем ускорение) и используя затем формулу (9.3).

Термин «скорость» тоже имеет в физике более широкий смысл, чем в обыденной жизни. Это не просто некоторое коли­чество метров в секунду, т. е. абсолютная величина скорости, но и направление перемещения в каждый момент времени. Мате­матически мы можем описать и величину, и направление скоро­сти, если будем задавать изменение координат тела с течением времени. Пусть, например, в некоторый момент тело движется так, как это показано на фиг. 9.1.

Фиг. 9.1. Малое перемещение тела.

Тогда за малый промежуток времени t оно пройдет некоторое расстояние х в направлении оси х, y в направлении оси у и z в направлении оси z. Ре­зультатом же этих изменений координат будет перемещение s вдоль диагонали параллелепипеда со сторонами x, y, z, которые следующим образом связаны с составляющими скорос­ти и интервалом:

x=vxt, y=vyt, z=vzt. (9.4)