Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции Фейнмана глава10.doc
Скачиваний:
28
Добавлен:
13.02.2015
Размер:
184.83 Кб
Скачать

§ 2. Закон сохранения импульса

Давайте посмотрим, чем интересен Третий закон Ньютона. Предположим для простоты, что имеются только две взаимо­действующие частицы — частица 1 и частица 2, масса которых может быть различна. К какому следствию приводит равенство и противоположная направленность сил между ними? Согласно Второму закону, сила равна скорости изменения импульса со временем, так что скорость изменения импульса частицы 1 равна скорости изменения импульса частицы 2, т. е.

dp1/dt=dp2/dt (10.1)

Но если скорости изменения все время равны по величине и противоположны по направлению, то и полное изменение им­пульса частицы 1 равно и противоположно полному изменению импульса частицы 2. Это означает, что если мы сложим эти импульсы, то скорость изменения суммы под воздействием одних только взаимных сил (их обычно называют внутренними силами) будет равна нулю, т. е.

(dp1+dp2)/dt=0. . (10.2)

Напомним еще раз, что в нашей задаче мы предполагаем отсут­ствие каких-либо других сил, кроме внутренних. Но равенство нулю скорости изменения этой суммы означает просто, что величина (p1+p2) не изменяется с течением времени. (Эта величина записывается также в виде m1v1+m2v2 и называется полным импульсом двух частиц.) Таким образом, мы получили, что при наличии одних только внутренних сил полный импульс двух частиц остается неизменным. Это утверждение выражает закон сохранения полного импульса в данном случае. Из него следует, что если мы измеряем или подсчитываем величину ni1v1+m2v2, т. е. сумму импульсов двух частиц, то для любых сил, действующих между ними, как бы сложны они ни были, мы должны получить одинаковый результат как до действия сил, так и после, т. е. полный импульс остается постоянным.

Рассмотрим теперь картину посложнее, когда есть три или большее число взаимодействующих частиц. Очевидно, что если существуют только внутренние силы, то полный импульс всех частиц остается постоянным, поскольку увеличение им­пульса одной частицы под воздействием другой частицы в точ­ности компенсируется уменьшением импульса этой второй частицы из-за противодействия первой, т. е. внутренние силы так сбалансированы, что полный импульс всех частиц изменить­ся не может. Таким образом, если нет сил, действующих на систему извне (внешних сил), то ничто не может изменить ее полный импульс и, следовательно, он остается постоянным.

Но нужно еще сказать о том, что произойдет, если будут еще существовать какие-то другие силы, кроме сил взаимо­действия между частицами. Предположим, что мы изолировали систему взаимодействующих частиц. Если имеются только взаимные силы, полный импульс, как и прежде, меняться не будет, сколь бы сложны ни были эти силы. Если, однако, существуют силы, обусловленные частицами вне этой изолиро­ванной группы, то, как мы докажем позднее, сумма всех этих внешних сил равна скорости изменения полного импульса всех внутренних частиц. Это очень полезная теорема.

Закон сохранения полного импульса некоторого числа взаимодействующих частиц в отсутствие внешних сил можно записать в виде

m1v1+m2v2 +m3v3+ ...=const, (10.3)

где mi и vi — просто масса и скорость частицы соответствую­щего номера. Однако для каждой из этих частиц Второй закон Ньютона

f=(d/dt)(mv) (10.4)

пишется для любой составляющей полной силы и импульса в любом заданном направлении, так что x-компонента силы, действующей на частицу, равна скорости изменения x-компоненты импульса этой частицы

fx=(d/dt)(mvx). (10.5)

Точно такие же формулы можно написать для у- и z-компонент. Это означает, что уравнение (10.3) фактически представляет собой три уравнения: по одному на каждую из компонент.

Существует еще одно интересное следствие Второго закона Ньютона, кроме закона сохранения импульса. Доказательст­вом его мы будем заниматься позднее, а сейчас я просто рас­скажу вам о нем. Следствие или, скорее, принцип состоит в том, что законы физики не изменяются от того, стоим ли мы на месте или движемся равномерно и прямолинейно. Пусть, на­пример, на быстро летящем самолете ребенок играет с мячиком. Наблюдательный ребенок сразу заметит, что мячик прыгает точно так же, как и на земле. Иначе говоря, законы движения для ребенка в самолете (если только последний не меняет скорости) выглядят одинаково как на поле аэродрома, так и в полете. Этот факт известен под названием принципа относи­тельности. В том виде, в котором он рассматривается здесь, мы будем называть его «принципом относительности Галилея» или «галилеевской относительностью», чтобы не путать его с более тщательным анализом, проделанным Эйнштейном, но об этом несколько позже.

Таким образом, из закона Ньютона мы вывели закон со­хранения импульса, а теперь давайте посмотрим, какие спе­цифические законы описывают соударение и рассеяние частиц. Однако для разнообразия, а также чтобы продемонстрировать типичные рассуждения, которыми мы часто пользуемся в фи­зике в других случаях, когда, скажем, не известны законы Ньютона и должен быть принят иной метод рассмотрения, да­вайте обсудим законы рассеяния и соударения с совершенно другой точки зрения. Мы будем исходить из принципа относи­тельности Галилея и в конце рассуждений придем к закону сохранения импульса.

Итак, начнем с утверждения, что законы природы не изме­няются от того, что мы движемся прямолинейно с некоторой скоростью или стоим на месте. Однако прежде чем обсуждать процессы, в которых два тела сталкиваются и слипаются или разлетаются в стороны, давайте рассмотрим случай, когда эти два тела связаны между собой пружинкой или чем-то в этом роде, а затем вдруг освобождаются и разлетаются под дей­ствием этой пружинки или, быть может, небольшого взрыва в разные стороны. Кроме того, рассмотрим движение только в одном направлении. Предположим сперва, что эти два тела совершенно одинаковы и расположены симметрично. Когда между ними произойдет взрыв, одно из них полетит направо с некоторой скоростью v. Тогда естественно, что другое полетит налево с той же самой скоростью v, поскольку оба тела подобны и нет никаких причин считать, что левая сторона окажется предпочтительнее правой. Итак, с телами должно происходить нечто симметричное. Этот пример показывает, насколько по­лезны рассуждения такого рода в различных задачах. Но они не всегда столь ясны, когда затуманены формулами.

Таким образом, первый результат нашего эксперимента — одинаковые тела имеют одинаковую скорость. Но предположим теперь, что тела сделаны из различного материала, скажем один из меди, а другой из алюминия, но массы их равны. Мы будем предполагать, что если проделать наш опыт с двумя равными массами, то несмотря на то, что тела не одинаковы, скорости их тем не менее будут равны. В этом месте мне могут возразить: «Но ведь вы можете сделать и обратное. Вам незачем было это предполагать. Вы можете определить массы как рав­ные, если они в нашем эксперименте приобретают одинаковую скорость». Давайте же примем это предложение и устроим не­большой взрыв между кусочком меди и очень большим куском алюминия, который настолько тяжел, что едва может быть сдвинут с места, тогда как медь стремительно отлетает. Это го­ворит о том, что алюминия слишком много. Уменьшим его ко­личество и оставим лишь совсем маленький кусочек. Если устроить взрыв снова, то отлетит уже алюминий, а медь почти не сдвинется. Значит, сейчас слишком мало алюминия. Очевид­но, что должно существовать какое-то промежуточное количе­ство, которое можно постепенно подбирать, пока скорости раз­лета не станут равными. Теперь мы можем сказать, что раз равны скорости этих кусков, то массы их мы тоже будем считать равными (т. е. фактически мы переворачиваем сделанное ранее утверждение, что равные массы будут иметь одинаковую ско­рость). Самое интересное здесь то, что физический закон пре­вращается просто в определение. Но тем не менее какой-то физический закон здесь все же есть, и если мы примем такое определение равенства масс, то этот закон можно найти сле­дующим образом.

Пусть из предыдущего эксперимента нам известно, что два куска вещества А и В (медь и алюминий) имеют равные массы. Возьмем теперь третье тело, скажем кусок золота, и выровняем его массу (точно так же, как это делалось раньше) с массой меди. Если теперь в нашем эксперименте заменить медь золо­том, то логически у нас нет никаких оснований утверждать, что эти массы (алюминия и золота) равны. Однако опыт пока­зывает, что такое равенство имеет место. Таким образом, опыт­ным путем мы обнаружили новый закон: если две массы порознь равны третьей (т. е. в нашем опыте они разлетаются с равными скоростями), то они равны между собой. (Этот закон вовсе не следует из подобного утверждения о величинах в математике; там оно просто постулируется.) Видите, как легко по неосто­рожности сделать безосновательное заключение. Утверждение, что массы равны, когда равны скорости,— это еще не опреде­ление; ведь при этом мы предполагаем справедливость матема­тических законов равенства, что в свою очередь приводит к предсказанию результатов некоторых экспериментов.

Возьмем еще один пример. Пусть при некоторой силе взры­ва установлено, что масса А равна массе В. А что произойдет, если увеличить силу взрыва? Будут ли равны скорости разлета в этом случае? Логика здесь снова бессильна, но опыт говорит, что это действительно так. Снова мы получаем закон, который утверждает: если из равенства скоростей двух тел делается заключение о равенстве их масс, то это равенство не зависит от величины скорости. Из этих примеров видно, что то, что сна­чала казалось просто определением, в действительности пред­полагает справедливость каких-то законов природы.

Итак, в дальнейших рассуждениях мы будем считать, что равные массы разлетаются в противоположные стороны с рав­ными скоростями, если между ними происходит взрыв. А что произойдет, если мы обратим задачу, т. е. если два одинаковых тела, летящие навстречу друг другу с равными скоростями, сталкиваются и слипаются вместе? Как будут они двигаться? Здесь опять на помощь приходят соображения симметрии (т. е. что между левой и правой сторонами нет никакого разли­чия), из которых следует, что образовавшееся тело должно стоять на месте. Мы будем также предполагать, что два тела с равной массой, летящих навстречу друг другу, даже если они сделаны из различного материала, после столкновения и сли­пания остановятся.