![](/user_photo/2706_HbeT2.jpg)
- •Министерство образования и науки рф
- •Введение
- •Требования к оформлению отчета*
- •Задания к лабораторным работам.
- •Лабораторная работа 2. Методы численного интегрирования.
- •Указания и требования к выполнению работы.
- •Методы численного интегрирования
- •Лабораторная работа № 3. Расчет реактора смешения для сложной реакции с линейной кинетикой
- •Требования по выполнению работы:
- •Замечания по выполнению работы.
- •Реактор идеального смешения
- •Методы решения систем линейных алгебраических уравнений.
- •Метод Жордана-Гаусса (обращения матриц).
- •Итерационные методы.
- •Лабораторная работа № 4
- •4.1 Обработка экспериментальных данных по парожидкостному равновесию.
- •Обработка экспериментальных данных.
- •38 Метанол-ацетон-гептан
- •43 Метанол-ацетон-циклогексан
- •1. Интерполирование.
- •2. Метод наименьших квадратов
- •4.2. Расчет температуры кипения и точки росы трехкомпонентной смеси.
- •Методы уточнения корней уравнений с одним неизвестным.
- •Расчет производится по следующим
- •Лабораторная работа 5 Расчет реактора идеального вытеснения
- •Требования по выполнению работы:
- •Методы решения обыкновенных дифференциальных уравнений
- •Лабораторная работа № 6 Исследование функции, нахождение ее характерных точек и ее графическое изображение в трехмерных координатах.
- •Содержание
- •Приложение –1 – описание языка турбо паскаль версия № 7.0
- •1. Алфавит языка
- •1.1. Символы, используемые в идентификаторах
- •1.2. Разделители.
- •1.3.2. Знаки операций
- •1.3.3. Зарезервированные слова
- •1.4. Неиспользуемые символы
- •2. Структура программы
- •3. Типы данных
- •3.1. Классификация типов данных
- •3.2. Простые типы данных
- •3.2.3. Символьный тип
- •3.2.4. Перечисляемый тип
- •3.2.6. Вещественные типы
- •4. Выражения
- •4.1. Переменные
- •4.2 .Константы.
- •4.2.1. Целые константы
- •4.2.4. Константные выражения
- •4.2.5. Типизированные константы
- •4.3. Стандартные функции
- •4.3.1. Арифметические функции
- •4.3.2. Функции преобразования типа
- •4.3.3. Функции для величин порядкового типа
- •4.4. Знаки операций
- •4.4.1. Арифметические операции
- •4.4.2. Логические операции
- •4.4.3. Операции с битами информации
- •4.4.4. Операции отношения
- •4.5. Круглые скобки
- •4.6. Порядок вычисления выражений
- •5. Операторы языка
- •5.1. Простые операторы
- •5.1.1. Оператор присваивания
- •5.1.2. Оператор безусловного перехода gото. Использование меток
- •5.1.3. Пустой оператор
- •5.2. Структурированные операторы
- •5.2.1. Составной оператор
- •5.2.2. Условный оператор if
- •5.2.3. Условный оператор саsе
- •5.2.4. Оператор цикла repeat
- •5.2.5. Оператор цикла while
- •5.2.6. Оператор цикла for
- •5.2.7. Использование стандартных процедур Break и Соntinue в операторах циклов repeat, while и for
- •6. Структурированные типы данных
- •6.1. Массив
- •6.2. Строка типа string
- •6.3. Аsciiz-строка
- •6.4. Запись
- •6.5. Множество
- •6.6. Файл
- •7 Динамические структуры — данных
- •7.1. Указатель
- •7.2. Работа с динамической памятью
- •7.3. Работа со структурами данных
- •8. Процедурные типы
- •9. Совместимость и преобразование типов данных
- •10 Процедуры и функции
- •10.1. Процедура
- •10.2. Функция
- •10.3. Формальные и фактические параметры
- •10.3.1 Параметры-значения
- •10.3.2. Параметры-переменные
- •10.3.3. Параметры-константы
- •10.3.4. Параметры без типа
- •10.3.5. Массивы и строки открытого типа
- •10.3.6. Параметры-процедуры и параметры-функции
- •10.4. Процедура еxit
- •10.5. Директивы подпрограмм
- •10.5.1. Директива forward
- •10.5.2. Директивы fаr и near
- •10.5.3. Директива ехтеrnal
- •10.5.4. Директива аssembler
- •Пример. Функция, определяющая максимальное из двух чисел
- •10.5.5. Директива inline
- •10.5.6. Директива interrupt
- •10.6. Рекурсивные процедуры и функции
- •11 Организация ввода-вывода
- •11.1. Стандартные процедуры и функции для всех файлов
- •Функции
- •11.2. Стандартные процедуры и функции для текстовых файлов
- •11.3. Стандартные процедуры и функции для типизированных файлов
- •Осуществляется настройка на элемент файла, с которым связана файловая переменная f. Элемент файла определяется номером №, причем нумерация элементов начинается с нуля.
- •11.4. Стандартные процедуры и функции для файлов без типа
- •11.5. Внешние устройства в качестве файлов
- •12 Объектно-ориентированное программирование в turbo pascal 7.0
- •12.1. Пример использования ооп
- •12.2. Понятие объекта
- •12.2.2. Наследование
- •12.2.3. Полиморфизм
- •12.3. Виртуальные методы
- •13 Модули
- •13.1. Заголовок модуля
- •13.2. Интерфейс модуля
- •13.3. Исполнительная часть модуля
- •13.4. Секция инициализации
- •13.5. Использование модуля в основной программе
- •13.6. Использование идентификаторов элементов модуля
- •14 Стандартные модули
- •14.1 Модуль System
- •Арифметические функции
- •Процедуры работы со строками
- •Функции работы со строками
- •Функции управления вводом-выводом
- •Процедуры управления вводом-выводом
- •Функции управления динамической памятью и адресные функции
- •Include Включение элементов множества
- •14.2. Модуль String
- •14.3. Модуль Сrt
- •C80 с080 Для совместимости с версией 3.0
- •14.4. Модуль Graph
- •14.4. Пример использования подпрограмм модуля Сrарh
6.1. Массив
Тип-массив представляет собой фиксированное количество упорядоченных однотипных компонент, снабженных индексами. Он может быть одномерным и многомерным. Чтобы задать тип-массив, используется зарезервированное слово аrrау, после которого следует указать тип индекса (индексов) компонент (в квадратных скобках) и далее после слова оf - тип самих компонент:
type
<имя типа>= аrrау[ <тип индекса( индексов )> ] of <тип компонент>;
Пример.
type
Arr = array[1..3] of real; {тип-массив из 3 вещественных чисел}
Matrix = аrrау[1..3,1..2] оf Integer;
{тип - двумерный массив целых чисел, состоящий из 3 строк и 2 столбцов}
Введя тип-массив, можно затем задать переменные или типизированные константы этого типа.
Размерность массива может быть любой, компоненты массива могут быть любого, в том числе и структурированного, типа, индекс (индексы) может быть любого порядкового типа, кроме типа Longint.
При задании значений константе-массиву компоненты указываются в круглых cкобках и разделяются запятыми, причем, если массив многомерный, внешние круглые скобки соответствуют, левому индексу, вложенные в них круглые скобки - следующему индексу и т. д.
Так, для введенных выше типов можно задать, например, следующие временные и константы:
var
M1, M2: Arr;
Matr: Matrix;
const
МЗ: Аrr = (1, 2, 3);
Matr: Matrix = ((1,2), (3, 4), (5,6));
Последняя константа соответствует следующей структуре:
-
1
2
3
4
5
6
Примечание. Тип-массив можно вводить непосредственно и при определении соответствующих переменных или типизированные констант. Например:.
M1,M2: array[1..3] of real; {массив из 3 вещественных чисел}
Matr : аrrау[1..3,1..2] оf Integer;
Здесь определены те же массивы, что и в предыдущем примере.
При таком объявлении массивов следует помнить, что их типы не будут идентичными никаким другим типам, даже если они имеют одинаковую структуру. Поэтому передавать их как параметры в подпрограмму нельзя, нельзя также присваивать им значения других массивов (и наоборот), даже если структуры совпадают.
Доступ к компонентам массива осуществляется указанием имени массива за которым в квадратных скобках помещается значение индекса (индексов) компоненты. В общем случае каждый индекс компоненты может быть задан выражением соответствующего типа.
Одному массиву можно присвоить значение другого массива, но только идентичного типа. Так, если заданы следующие массивы:
var А, В: аrrау[1..5] оf Integer;
С: аrrау[1..5] оf Integer;
То допустим следующий оператор: A:= B;
С другой стороны, оператор: C:= A; недопустим, т. к. массивы А и С - не идентичных типов.
Имеются некоторые отличия в работе с одномерными массивами символов (не путать с величинами типа string). Так, типизированным константам этого вида можно присвоить значение как обычным строковым константам, указав строку символов в апострофах, например:
const
А: аrrау[1..5] оf Char = ‘aaaaa’;
B: аrrау[1..3] оf Char = ‘bbb’;
Для таких массивов, как и для строк, можно использовать операции сравнения (даже если они не идентичных типов и даже если имеют различный размер) и конкатенации (объединения) см. п. 6.2. Их можно использовать в операторах вывода Write и WriteLn. Например, для введенных выше массивов можно написать:
if А > В then
WriteLn(A)
else
WriteLn(B);