- •(КубГту)
- •Материаловедение
- •Составитель: канд. Техн. Наук, доцент о.С.Огурцов а
- •Тема 1. Составы и структура строительных материалов
- •1 Составы строительных материалов
- •1.6 Краткие выводы по вопросу состава строительных материалов
- •2 Структура материалов
- •2.4 Краткие выводы по вопросу структуры материалов
- •Тема 2 Свойства материалов
- •1 Структурные характеристики
- •2 Физические свойства
- •2.1 Гигроскопичность – свойство капиллярно-пористого материала поглощать водяные пары из воздуха и удерживать их вследствие капиллярной конденсации.
- •2.2 Теплофизические свойства
- •2.3 Звукоизоляционные свойства
- •3 Химические свойства материалов
- •4 Механические свойства
- •4.2 Прочность строительных материалов
- •5 Долговечность и надежность
- •Тема 3 Материалы из природного камня
- •Каждый минерал характеризуется строго определенным химическим составом и рядом физических свойств: плотность, кристаллическое строение, твердость, цвет, цвет черты, характер излома, спайность и др.
- •Классификация и свойства минералов
- •1.1 Классификация минералов
- •Классификация природных изделий
- •Характеристика и применение природных каменных изделий
- •Методы защиты природных каменных материалов от разрушения
- •Тема 4. Древесные материалы
- •Строение и состав
- •Основные свойства древесины
- •Древесные породы, применяемые в строительстве
- •6 Методы защиты древесины от гниения, возгорания
- •Тема 5. Неорганические вяжущие вещества
- •1 Гидравлические вяжущие вещества.
- •1.1 Общая классификация цементов
- •1.2 Портландцемент
- •1.3 Цементы сульфатостойкие
- •1.4 Портландцементы белые и цветные
- •1.5 Цементы глиноземистые, высокоглиноземистые и
- •1.6 Расширяющиеся цементы
1.6 Краткие выводы по вопросу состава строительных материалов
1.6.1 Вещественный (элементный) и химический составы материалов определяют многие параметры системы: химический потенциал, энергетическое состояние, термодинамику состояния (перехода) и, следовательно тип и энергию химических связей.
1.6.2 Минералогический состав предопределяет внутреннее строение, микроструктуру материала, а также его физико-химические и термические показатели.
1.6.3 Фазовый состав свидетельствует о гомогенности или гетерогенности системы, определяет взаимосвязь между элементами структуры и предопределяет упругодеформативные и термомеханические свойства материалов.
1.6.4 Гранулометрический и фракционный составы определяют макроструктуру материалов и взаимодействие его с окружающей средой и, как следствие, прочностные, тепло- и гидрофизические свойства материалов.
2 Структура материалов
Термин "структура" трактуется очень широко. Структура, по мнению физика, это особенность строения кристаллической решетки тела, химика – результат взаимодействия молекул, атомов и т.п., биолога - особенность строения клетки и т.д. В строительном материаловедении под термином "структура" подразумевают взаиморасположение элементов, составляющих тот или иной материал. Например, по структуре керамические изделия подразделяют на изделия грубой и тонкой керамики, бетоны с плавающей и контактной структурой, крупнозернистые, мелкозернистые и ячеистые и т.д.
Структура (строение, расположение, порядок) – совокупность устойчивых связей тела (объекта), обеспечивающих его целостность.
Структуру строительного материала изучают на трех уровнях: макро уровне - макроструктура – строение материала видимое невооруженным глазом; микро уровне - микроструктура – строение материала, видимое через микроскоп; внутренняя структура строение вещества, изучаемое на молекулярно-ионном уровне (физико-химические методы исследования – электронный микроскоп, термогравиметрия, рентгеноструктурный анализ и т.д).
2.1 Макроструктура – это видимая невооруженным глазом или при небольшом увеличении внутренняя или поверхностная часть материала. Макроструктура в целом характеризуется фазовым составом, т.е. наличием элементов структуры в виде твердого тела, жидкости и газовой среды.
При визуальном осмотре изделия выявляют зоны и участки, различающиеся пористостью, окраской, зерновым составом и другими особенностями, а также различные дефекты структуры в виде трещин, каверн и пр.
Макроструктуру строительных материалов делят на несколько групп: конгломератная, ячеистая, мелкопористая, волокнистая, слоистая, и рыхлозернистая (порошкообразная). Конгломератная структура - соединение разнородных веществ, обычно в виде зерен, кусков различных форм и размеров, например, конгломератную структуру имеют тяжелые бетоны. Ячеистая структура свойственна газо-, пенобетонам, пеностеклу, пемзе. Ячеистая структура характеризуется наличием макропор, у мелкопористых большинство ячеек размером менее 1 мм, например у керамических материалов. Волокнистая структура присуща природным (древесина) или искусственным (минеральная вата) материалам с расположением волокон в одном направлении или хаотично. Показатели свойств таких материалов заметно отличаются при физических воздействиях вдоль или поперек волокон. Слоистая структура предполагает наличие в материале нескольких, в том числе и разнородных слоев, характерна для листовых материалов, плитных, рулонных гидроизоляционных и др. Рыхлозернистую структуру имеют сыпучие порошкообразные материалы, состоящие из большого количества несвязанных зерен или мелких частиц, например щебень (гравий), песок - заполнители для бетонов и растворов, материалы для тепло- звукоизоляционной засыпки.
В процессе структурообразования в определенный промежуток времени, как правило, имеют место только две фазы: жидкая (расплав или раствор) и твердая (кристалл или стекло). При стабилизации структуры возможно наличие третьей (газовой фазы).
2.2 Микроструктура – строение вещества, материала различимое с помощью оптических приборов (под микроскопом). Классически выделяют три типа микроструктур: кристаллическую, аморфную, смешанную.
Кристаллическая структура – упорядоченная, наиболее устойчивая форма агрегатного состояния вещества. Кристаллическая структура формируется из термодинамически неустойчивых диспергированных систем, обладающих огромным запасом свободной энергии. Кристаллизация, как правило, самопроизвольный процесс с выделением тепла (энергии). Образующиеся кристаллы определяют физические, механические, термические, электрические, оптические и другие свойства структуры. Схема изменения состояния тела на рис 1.
Переход кристаллического тела в аморфное состояние связан с сообщением механической, химической или тепловой энергии.
Аморфная структура – промежуточное состояние между двумя периодами существования кристаллической структуры: до полной кристаллизации (левая часть схемы) и в стадии активного распада (правая часть схемы).
Кристаллическое состояние твердого тела (устойчивое)


Кристаллизация
Аморфизация
Стеклообразное Жидкость, расплавы,
состояние
т
вердого
тела
растворы, дисперсии
(малоустойчивое) Стеклообразное (неустойчивое состояние)
Рис.1 Схема изменения состояния (структуры) тела
Смешанная аморфно-кристаллическая структура, точнее стеклокристаллическая – сложная структура. Соотношение между кристаллической и аморфной фазами оказывает огромное влияние на свойства материала. Схема образования аморфно-кристаллической структуры на рис. 2. Вершины треугольника символизируют структуры (состояние вещества или материала): вершина "А" – кристаллическая структура, "В" – аморфная структура, "С" – стеклообразное состояние твердых тел.
Кристаллическая структура (устойчивая)
А


Стеклокристаллическая структура Стеклокристаллическая структура
(ситалловая) образованная из стекла образованная из кристаллов
Аморфно-кристал лическая структура


Конденсация Диспергация
(созидательный процесс) (разрушительный процесс)
С
В
Аморфная структура (неустойчивая)
Рис. 2 Схема образования аморфно-кристаллической структуры
Зона, расположенная выше линии, проходящей через точку "А", предполагает наличие в ней элементов ярко выраженной кристаллической или поликристаллической структуры. Ярко выраженную кристаллическую структуру имеют минералы образующие горные породы, такие горные породы, как гранит, диорит и др., клинкерные минералы цемента. Зона ниже линии "СВ" – включает природные и искусственные материалы и соединения, имеющие аморфную структуру: вулканическое стекло, стекло и изделия из него, сажа, аморфный кремнезем. Между двумя горизонтальными линиями расположена зона элементов смешанной аморфно-кристаллической структуры. Большинство строительных материалов имеют именно эту структуру: строительная керамика, бетоны, растворы и др.
Классификация материалов по структуре представлена в табл. 4.
2.3 Внутреннее строение вещества определяет его механическую прочность, твердость, теплопроводность и др. свойства, зависит от его агрегатного состояния и устойчивости и может иметь строго упорядоченное строение (т.е. кристаллическую решетку) или беспорядочное (хаотическое расположение молекул и атомов).
Природа частиц, находящихся в узлах кристаллической решетки, и химические связи определяют тип кристаллической решетки: атомный, молекулярный, ионный, металлический.
Вещества с атомными решетками характеризуются высокой твердостью и тугоплавкостью, они практически не растворимы ни в каких растворителях. Таких веществ сравнительно мало, например алмаз, кремний. Молекулярную решетку имеют почти все вещества неметаллы, кроме углерода и кремния, они имеют невысокую твердость, легкоплавкие, летучие. К соединениям с ионной кристаллической решеткой относят большинство солей и некоторые оксиды. По прочности ионные решетки уступают атомным решеткам, но превосходят молекулярные, и имеют высокие температуры плавления. Металлы отличаются от других соединений атомов наличием свободных электронов, отсюда высокие электро- и теплопроводность.
Решетки разных веществ отличаются друг от друга природой образующих их частиц и расположением частиц в пространстве, образуя элементарные ячейки, которые придают веществу только ему свойственные особенности.
