
- •Санмед теория
- •1. Предмет, цели и задачи санитарной микробиологии. История развития санитарной и медицинской микробиологии
- •2. Значение проведения мониторинга состояния окружающей среды для предотвращения распространения инфекционных заболеваний
- •3. Методы оценки микробиологического загрязнения среды патогенами
- •4. Понятие о санитарно-показательных микроорганизмах
- •5. Группы санитарно-показательных микроорганизмов (бактерии группы кишечной палочки)
- •6. Группы санитарно-показательных микроорганизмов (анаэробные споровые сульфатредуцирующие бактерии)
- •7. Группы санитарно-показательных микроорганизмов (бактерии группы протея)
- •8. Группы санитарно-показательных микроорганизмов (стрептококки и стафилококки)
- •9. Методы выявления санитарно-показательных микроорганизмов (бактерии группы кишечной палочки)
- •10. Методы выявления санитарно-показательных микроорганизмов (анаэробные споровые сульфатредуцирующие бактерии)
- •11. Методы выявления санитарно-показательных микроорганизмов (бактерии группы протея)
- •12.Методы определения санитарно-показательных микроорганизмов (стрептококки и стафилококки)
- •13. Количественные показатели санитарного состояния среды: микробное число, титр, индекс
- •14. Микрофлора воздуха
- •15. Особенности санитарно-микробиологических исследований воздуха в закрытых помещениях, в больших городах, на предприятиях пищевой и микробиологической промышленности
- •16. Методы отбора проб воздуха и используемые для этого приборы
- •17. Методы определения микробного загрязнения воздуха
- •18. Санитарно-показательные микроорганизмы воздуха
- •19. Определение общей численности сапрофитных микроорганизмов
- •20. Обнаружение стафилококков в воздухе закрытых помещений. Определение стрептококков и способы их идентификации
- •21. Определение патогенных микроорганизмов в воздухе
- •22. Значение санитарного состояния воздушной среды помещений в передаче инфекций
- •23. Вода как источник инфекционных заболеваний
- •24. Цели и задачи санитарно-микробиологического исследования воды
- •25. Биологические и микробиологические методы обследования микрофлоры воды
- •26. Контроль качества питьевой воды
- •27. Методы отбора проб воды для бактериологического исследования
- •28. Санитарно-показательные микроорганизмы воды
- •29. Методы индикации патогенных микроорганизмов
- •30. Определение числа сапрофитной микрофлоры воды
- •31. Определение числа бактерий группы кишечных палочек, бактериофагов в воде
- •32. Комплексная санитарно-микробиологическая оценка качества воды с учетом органолептических, гельминтологических и химических данных
- •33. Регламентирующая документация для комплексной санитарно-микробиологической оценки качества воды (госТы, санитарные правила и методические указания и др.)
- •34. Критерии безусловного показателя загрязненности воды и ее непригодности для любых целей
- •35. Биологическое загрязнение почв
- •36. Микрофлора почвы
- •37. Причины загрязнения почв
- •38. Распределение микроорганизмов в почве
- •39. Санитарно-микробиологический контроль почв, его цель, задачи
- •40. Методы санитарно-микробиологического контроля почв
- •41. Методы отбора проб почвы для микробиологического анализа, способы их транспортировки и хранения
- •42. Подготовка проб почвы для микробиологического анализа
- •43. Определение бгкп – титрационный метод, метод мембранных фильтров
- •44. Использование сред накопления при санитарно-микробиологическом исследовании почв
- •45. Посев на плотные питательные среды
- •46. Метод прямой микроскопии, подсчет микроорганизмов
- •47. Определение общего числа сапрофитных бактерий в образце исследуемой почвы
- •48. Определение термофильных, нитрифицирующих бактерий и их значение при оценке состояния почв
- •51. Характеристика спорообразующих патогенных микроорганизмов, постоянно обитающих в почве
- •52. Характеристика групп патогенных микроорганизмов, попадающих в почву с выделениями человека и животных
- •53. Способы обнаружения в почве сальмонелл
- •54. Способы обнаружения в почве шигелл
- •55. Способы обнаружения в почве клостридий столбняка и ботулизма
- •56. Перфрингенс-титр как важнейший критерий для санитарной оценки почвы и ее самоочищения
- •57. Методы определения перфрингенс-титра
- •58. Особенности микробной обсемененности пищевых продуктов
- •59. Специфическая микрофлора пищевых продуктов как обязательное звено в технологии их приготовления (Lactococcus lactis, Lactococcus bulgaricus, Lactococcus acidophilus)
- •60. Неспецифическая микрофлора пищевых продуктов – микробы сапрофиты, условно-патогенные
- •61. Неспецифическая микрофлора пищевых продуктов – патогенные микроорганизмы
- •62. Микроорганизмы, вызывающие порчу пищевых продуктов
- •63. Заболевания передающиеся через пищевые продукты: пищевые инфекции
- •64. Заболевания передающиеся через пищевые продукты: пищевые отравления
- •65. Лабораторная диагностика пищевых бактериальных отравлений
- •66. Значение микробиологического анализа для выяснения причин пищевых токсикоинфекций
- •67. Соблюдение санитарно-гигиенических норм и правил на всех стадиях производства
- •68. Санитарно-гигиенический контроль за производством как неотъемлемая составляющая в предотвращении пищевых инфекций и отравлений
25. Биологические и микробиологические методы обследования микрофлоры воды
Ответ. Определение общего микробного числа. Сущность метода заключается в определении в 1 см3 воды общего содержания мезофильных аэробов и факультативных анаэробов, способных расти на питательном агаре данного состава при температуре 37°С в течение 24 ч, образуя колонии, видимые при увеличении в 2-5 раз. Определение общего микробного числа воды можно проводить методом серийных десятикратных разведений с посевом на мясопептонный агар (МПА) и методом прямого микроскопического подсчета микроорганизмов в исследуемой воде. При определении первым методом производят посев проб воды на питательные среды с последующим подсчетом выросших колоний. Объем воды для посева выбирают с таким расчетом, чтобы на чашках выросло от 30 до 300 колоний. Водопроводную воду засевают в объеме 1 мл, воду открытых водоемов – в объемах 1; 0,1 и 0,01 мл. Засев каждого разведения проводят глубинным способом. Воду из открытых водоемов засевают параллельно на две серии чашек, одну из которых инкубируют при температуре 37° С в течение 24 ч, а другую – при 20-22°С 48 ч. При температуре 20°С вырастает большее количество сапрофитов и именно они являются наиболее активными участниками процесса самоочищения водоема. Для выявления плесневых и дрожжевых грибов исследуемую воду засевают по 0,5 мл на среду Сабуро и инкубируют при комнатной температуре в течение 3 — 4 сут. Подсчитывают число выросших колоний и также рассчитывают среднее арифметическое. Результат (ОМЧ) вычисляют путем суммирования среднего арифметического числа бактерий, дрожжевых и плесневых грибов и выражают в КОЕ/мл. Прямой микроскопический метод определения общего количества микроорганизмов заключается в концентрации бактерий на мембранных фильтрах (при пропускании через них исследуемой воды), последующем окрашивании эритрозином и микроскопировании. Прямой метод удобен тем, что результат, т.е. количество микроорганизмов в 1 мл воды, может быть получен в течение нескольких часов. Поэтому рекомендуется использовать прямой метод, если необходимо дать быструю санитарную оценку воды. Количество колиформных бактерий выражают в виде коли-титра или коли-индекса. Коли-титр воды – минимальное количество БГКП в 1 л воды. Для определения этих показателей используют метод мембранных фильтров и титрационный (бродильный) метод. Исследование воды методом мембранных фильтров. Метод основан на фильтрации установленного объема воды через мембранные фильтры, выращивании посевов на дифференциально-диагностической среде и последующей идентификации колоний по культуральным и биохимическим признакам. Фильтр накладывают вверх поверхностью, на которой осели бактерии, избегая появления пузырьков воздуха между фильтром и средой. С культурой грамотрицательных бактерий лактозоположительных колоний ставят оксидазный тест для дифференциации бактерий семейства Enterobacteriaceae от Pseudomonadaceae. Для этого фильтр с выросшими на нем колониями бактерий переносят пинцетом, не переворачивая, на кружок фильтровальной бумаги, смоченной диметил-п-фенилендиамином. При наличии оксидазы реактив окрашивает колонию в синий цвет. 2-3 колонии, не изменившие окраску (оксидазоотрицательные) засевают в пробирку с полужидкой средой с 0,5% раствором глюкозы и инкубируют при 37°С. При появлении кислоты и газа результат считают положительным. Подсчитывают число красных колоний на фильтре и определяют коли-индекс. Титрационный метод исследования воды основан на накоплении бактерий после посева установленного объема воды в жидкую питательную среду, с последующим пересевом на дифференциально-диагностическую среду и идентификации колоний по культуральным и биохимическим тестам. Объем засеваемой воды зависит от характера исследуемого объекта. Посев воды производится в глюкозопептонную среду (1% пептонная вода, 0,5% раствор глюкозы, 0,5% раствор хлорида натрия, индикатор Андреде, поплавок). Посевы инкубируют в термостате в течение суток при температуре 37°С. Из пробирок с посевами, в которых наблюдается помутнение (а также образование кислоты и газа в поплавке), делают высев петлей штрихами на поверхность среды Эндо. Посевы выдерживают в термостате при температуре 37°С в течение 16-18 ч. Определение термотолерантных колиформных бактерий (ТКБ). ТКБ определяют теми же методами, как и БГКП, кроме последнего этапа идентификации, который проводится по ферментации лактозы на полужидкой питательной среде при 44,5°С. В случае роста на среде Эндо типичных лактозоположительных колоний, Гр(-), оксидазоотрицательных, способных ферментировать лактозу при 44,5°С, их учитывают как ТКБ, определяют индекс или титр. Присутствие колифагов (бактериофагов, паразитирующих на Е. coli) определяют методом агаровых слоев по Грациа. Для определения используют чувствительные музейные культуры микроорганизмов (тест-организмы). За 18-24 часа перед проведением анализа необходимо сделать посев тест-культуры на скошенный питательный агар (МПА). Исследуемую воду 100 мл внести в 5 стерильных чашек Петри (по 20 мл в каждую). В питательную среду добавить смыв E.coli (из расчета 1 мл на 100 мл агара) и хорошо перемешать. Полученной смесью залить по 30 мл сначала пустую чашку Петри (контроль), а затем все чашки, содержащие исследуемую воду. После застывания питательной среды чашки переворачивают вверх дном и ставят для инкубирования в термостат при 37°С на 18-24 ч. В результате индикаторная культура образует равномерный сплошной рост, а при наличии колифагов в этом «газоне» образуются прозрачные бляшки («негативные колонии» бактериофага). Определение спор сульфитредуцирующих клостридий. Испытуемую воду вносят в расплавленную и остуженную среду Вильсона—Блера. Среда содержит тиосульфат (гипосульфит) и бесцветную соль железа. В результате прорастания спор, размножения клостридий и восстановления ими сульфита образуется сульфид железа, который придает среде черный цвет. Количественно эти микроорганизмы в воде можно определить методом мембранной фильтрации или прямым посевом. Применяя метод мембранной фильтрации, пробу воды определенного объема пропускают через фильтр, который затем помещается в пробирку с подготовленной расплавленной питательной средой верхней стороной внутрь или в чашку Петри на поверхность питательной среды, которая затем заливается той же питательной средой толстым слоем. Метод прямого посева предполагает посев в стерильные пробирки 20 мл воды. Сверху посевы воды заливают горячим (75-80°С) железосульфитным агаром в количестве, превышающем объем воды в 2 раза. Среду заливают по стенке пробирки, стараясь не допустить образования пузырьков воздуха. Пробирки с посевами быстро охлаждают в стакане с холодной водой, инкубируют при 44°С в течение 24 ч. Количественному учету подлежат только те посевы, где получены изолированные колонии. Подсчитывают черные колонии, выросшие как на фильтре, так и в толще питательной среды. Результат анализа выражают числом колониеобразующих единиц (КОЕ) спор сульфит-редуцирующих клостридий в определенном объеме воды (подвергнутой анализу).