
- •Раздел 1. Алгебраические структуры Тема 1.1. Бинарные операции и их свойства
- •Тема 1.2. Алгебраические структуры
- •Тема 1.3. Основные свойства групп
- •Тема 1.4. Поля и кольца
- •Раздел 2. Алгебра множеств Тема 2.1. Основные определения теории множеств
- •Тема 2.2. Подмножество, понятие универсального множества
- •Тема 2.3. Операции над множествами
- •Раздел 3. Основные теоремы комбинаторики
- •Тема 3.1. Метод математической индукции
- •Тема 3.2. Основные принципы комбинаторики
- •Раздел 4. Комбинаторные объекты Тема 4.1. Сочетания
- •Тема 4.2. Размещения и перестановки
- •Раздел 5. Полиномиальные тождества Тема 5.1. Бином Ньютона
- •Тема 5.2. Понятие о методе рекуррентных соотношений
- •Тема 5.3. Метод производящих функций
- •Тема 5.4. Метод траекторий
- •Тема 5.5. Примеры комбинаторных задач
- •Раздел 6. Соответствие, отношение, отображение Тема 6.1. Понятие кортежа. Декартово произведение множеств
- •Тема 6.2. Определения и свойства
- •Тема 6.3. Типы отношений
- •Пересечение и объединение отношений
- •Композиция отображений и отношений
- •Тема 6.5. Решётки
- •Тема 6.4. Верхняя и нижняя границы множества.
- •Раздел 7. Операции булевой алгебры Тема 7.1.Понятие высказывания, простые и составные высказывания
- •Тема 7.2.Операции на множестве высказываний
- •Отрицание
- •Конъюнкция
- •Дизъюнкция
- •«Исключающее или»
- •Импликация
- •Эквивалентность
- •Штрих Шеффера
- •Раздел 8. Законы и тождества Булевой алгебры Тема 8.1.Формулы Булевой алгебры
- •Тема 8.2.Законы и тождества Булевой алгебры
- •Тема 8.3.Составление формулы по заданной таблице истинности
- •Тема 8.4. Двойственность
- •Тема 8.5.Булева алгебра и теория множеств
- •Тема 8.6.Днф, интервалы и покрытия
- •Раздел 9. Функциональная полнота. Алгебра Жегалкина
- •Тема 9.1.Функционально полные системы
- •Тема 9.2.Алгебра Жегалкина и линейные функции
- •Тема 9.3.Замкнутые классы. Монотонные функции
- •Тема 9.4.Теоремы о функциональной полноте
- •Раздел 10. Хорновские формулы
- •Тема 10.1.Задача получения продукции
- •Тема 10.2.Решение задачи о продукции
- •Алгоритм замыкание(X,f)
- •Алгоритм ПрямаяВолна(X,y,f)
- •Алгоритм БыстроеЗамыкание(X,f)
- •Раздел 11. Теория релейно-контактных схем Тема 11.1.Основные понятия
- •Тема 11.2.Основные задачи теории релейно-контактных схем
- •Тема 11.3.Построение машины голосования
- •Тема 11.4.Двоичный сумматор
- •Тема 11.5.Методы упрощения логических выражений. Методы решения логических задач
- •Раздел 12. Логика предикатов Тема 12.1.Определение предиката
- •Тема 12.2.Логические операции над предикатами
- •Тема 12.3.Кванторы
- •Тема 12.4. Истинные формулы и эквивалентные соотношения
- •Тема 12.5.Доказательства в логике предикатов
- •Раздел 13. Теория графов
- •Тема 13.1.Основные определения теории графов
- •Тема 13.2. Способы задания графов
- •Тема 13.3. Отношения порядка и эквивалентности на графе
- •Тема 13.4. Числовые характеристики графа
- •Тема 13.5.Изоморфизм графов
- •Раздел 14. Проблемы достижимости на графах Тема 14.1.Граф достижимости
- •Тема 14.2.Взаимная достижимость, компоненты сильной связности и базы графа
- •Раздел 15. Некоторые классы графов Тема 15.1.Деревья
- •Тема 15.2. Обход графа
- •Тема 15.3. Расстояния. Диаметр, радиус и центр графа. Протяжённости.
- •Раздел 16. Машина Тьюринга
- •Тема 16.1. Формальное описание машины Тьюринга
- •Тема 16.2. Примеры построения машины Тьюринга
- •Тема 16.3. Свойства машины Тьюринга как алгоритма
- •Раздел 17. Машина Поста
- •Тема 17.1. Теоретическая часть. Состав машины Поста
- •Тема 17.2. Применимость программ. Определение результата выполнения программ
- •Раздел 18. Основные понятия теории автоматов Тема 18.1. Общие подходы к описанию устройств, предназначенных для обработки дискретной информации
- •Тема 18.2. Способы задания конечного автомата
- •Тема 18.3. Эквивалентные автоматы
- •Тема 18.4. Автоматы Мура и Мили
- •Тема 18.5. Примеры синтеза автоматов
Тема 8.5.Булева алгебра и теория множеств
Ранее
были описаны булевы алгебры множеств,
то есть алгебры вида
,
где
– булеан множества, то есть множество
всех возможных его подмножеств. Общий
термин «булева алгебра» для алгебр
множеств и логических функций не является
случайным. Всякая алгебра называется
булевой алгеброй, если её операции
удовлетворяют соотношениям, приведённым
в пункте 8.2.
В алгебре
множеств элементами являются подмножества
фиксированного универсального множества
.
В этой алгебре операция пересечения
соответствует конъюнкции, операция
объединения соответствует дизъюнкции,
а операция дополнения соответствует
отрицанию. Само множество
является единицей, а
– нулём. Справедливость соотношений в
пункта 8.2. для этой алгебры можно доказать
непосредственно, рассматривая в них
переменные как множества, а знаки
логических функций – как соответствующие
операции над множествами.
Очевидно
взаимно однозначное соответствие между
множеством
,
где
и множеством
двоичных векторов длины
.
Каждому подмножеству
соответствует двоичный вектор
,
где
,
если
,
и
,
если
.
Операции над векторами в булевой алгебре
определяются следующим образом.
Пусть
даны два вектора
и
из множества
.
Тогда:
Поскольку компоненты (координаты) векторов принимают значения 0 или 1, то указанные операции – это просто логические операции над двоичными переменными, поэтому операции над векторами естественно назвать покомпонентными логическими операциями над двоичными векторами.
Пример
8.6:Даны векторыи
.
Найти
.
Решение:
.
Заметим, что подобные операции (наряду с логическими операциями над переменными) входят в систему команд любой современной ЭВМ.
Теорема:Если мощность множества
равна
,
то булева алгебра
изоморфна булевой алгебре
.
Эта простая по содержанию теорема имеет огромное значение в математике. Она позволяет заменить теоретико-множественные операции над системой подмножеств данного множества поразрядными логическими операциями над двоичными векторами.
Похожая
по формулировке, но значительно
отличающаяся по смыслу теорема существует
для множества всех логических функций
переменных
.
Обозначим это множество
.
Оно замкнуто относительно операций
и, следовательно, образует конечную
булеву алгебру
,
которая является подалгеброй булевой
алгебры логических функций.
Теорема:Если мощность множества
равна
,
то булева алгебра
изоморфна булевой алгебре функций
.
Последняя
теорема указывает на тесную связь между
множествами и логическими функциями и
позволяет переходить от операций над
множествами к операциям над функциями
и обратно. В частности, они позволяют
непосредственно производить операции
над функциями, заданными не формулами,
а таблицами. Пример приведён в следующей
таблице, содержащей две функции трёх
переменных
и
и результаты операций над ними:
|
|
|
|
|
|
|
|
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |