
- •Курс общей физики (лекции)
- •Электродинамика и научно-технический прогресс
- •Свойства электрических зарядов
- •Закон Кулона
- •Электрическое поле
- •Идеи близко - и дальнодействия
- •Напряжённость электрического поля. Поле точечного заряда. Графическое представление электрических полей
- •Принцип суперпозиции электрических полей
- •Поле диполя
- •Поле бесконечно заряженной нити
- •Лекция 2«Теорема Гаусса для электрического поля»
- •Поток вектора напряжённости электрического поля
- •Теорема Гаусса для электрического поля
- •Применение теоремы Гаусса для расчёта электрических полей
- •Поле бесконечной заряженной нити
- •Поле бесконечной равномерно заряженной плоскости. Поле плоского конденсатора
- •Поле сферического конденсатора
- •Лекция 3 «Потенциал электростатического поля»
- •Работа сил электростатического поля при перемещении заряда. Потенциал и разность потенциалов.
- •Теорема о циркуляции в вектора напряжённости электростатического поля
- •Связь напряжённости и потенциала электростатического поля
- •Примеры расчёта потенциала электростатических полей
- •Потенциал поля точечного заряда (рис. 3.8.)
- •Разность потенциалов на обкладках сферического конденсатора (рис. 3.9.)
- •Лекция 4 «Электростатика проводников»
- •Электрическое поле заряженного проводника
- •Проводники во внешнем электрическом поле. Явление электростатической индукции. Электрическая защита.
- •Электроёмкость проводника. Конденсаторы. Емкость конденсаторов.
- •Ёмкость плоского конденсатора
- •Ёмкость сферического конденсатора
- •Ёмкость цилиндрического конденсатора
- •Энергия электрического поля. Плотность энергии.
- •Лекция 5 «Электрическое поле в диэлектриках»
- •Типы диэлектриков. Поляризация диэлектриков. Поляризуемость и вектор поляризации.
- •Диэлектрическая проницаемость. Вектор электрического смещения.
- •Законы электрического поля в диэлектриках
- •Закон Кулона
- •Теорема Остроградского-Гаусса
- •Условия на границе двух диэлектриков
- •Лекция 6 «Постоянный электрический ток»
- •Электрический ток. Характеристики электрического тока
- •Законы Ома для участка цепи
- •Закон Ома в интегральной форме
- •Закон Ома в дифференциальной форме
- •Пример расчёта силы тока в проводящей среде
- •Закон Джоуля-Ленца в интегральной и дифференциальной формах
- •Лекция 7 «Постоянный электрический ток»
- •Сторонние силы. Источники тока. Э.Д.С. Источника
- •Закон Ома для неоднородного участка цепи. Закон Ома для замкнутого контура.
- •Правила Кирхгофа
- •Классическая теория электропроводности металлов
- •Лекция 8 «Электромагнетизм. Основы магнитостатики»
- •Электростатика. Краткий обзор.
- •Магнитное взаимодействие электрических токов
- •Магнитное поле. Закон Ампера. Индукция магнитного поля.
- •Принцип суперпозиции магнитных полей. Закон Био-Савара-Лапласа.
- •Магнитное поле прямолинейного тока
- •Магнитное поле на оси кругового тока
- •Магнитное поле движущегося заряда
- •Лекция 9 «Основы магнитостатики»
- •Краткий обзор предыдущей лекции
- •Сила Лоренца
- •Теорема Гаусса и теорема о циркуляции магнитного поля. Система уравнений Максвелла электро- и магнитостатики.
- •Примеры расчёта магнитных полей
- •Поле прямолинейного тока
- •Поле бесконечного соленоида
- •Поле тороида
- •Лекция 10 «Электромагнитная индукция. Энергия магнитного поля»
- •Явление электромагнитной индукции
- •Опыты Фарадея
- •Правило Ленца
- •Электродвижущая сила индукции. Закон Фарадея.
- •Индуктивность. Индуктивность соленоида. Явление самоиндукции.
- •Токи размыкания и замыкания цепи. Энергия и плотность энергии магнитного поля.
- •Лекция 11 «Электрические колебания»
- •Колебательные контуры. Квазистационарные токи.
- •Собственные электрические колебания
- •Собственные незатухающие колебания
- •Собственные затухающие колебания
- •Вынужденные колебания
- •Резистор (r) в цепи переменного тока (рис. 11.7.)
- •Индуктивность в цепи переменного тока (рис. 11.9.)
- •Вынужденные колебания. Резонанс.
- •Проблема косинуса фи
- •Лекция 12 «Теория Максвелла»
- •Две трактовки явления электромагнитной индукции. Вихревое электрическое поле
- •Ток смещения. Обобщение теоремы о циркуляции магнитного поля
- •Полная система уравнений Максвелла и их физический смысл
- •Лекция 13 «Электромагнитные волны»
- •Волновой процесс. Уравнение плоской волны. Волновое уравнение.
- •Плоская электромагнитная волна. Свойства электромагнитных волн.
- •Энергия электромагнитных волн. Плотность потока энергии. Вектор Пойнтинга.
- •Примеры вычисления плотности потока энергии
- •Плотность потока энергии в плоской электромагнитной волне в вакууме
- •Плотность потока энергии электромагнитного поля в цепи постоянного тока. Выделение джоулева тепла в проводнике.
- •Лекция 14 «Магнетизм как релятивистский эффект»
- •Магнитная сила как релятивистское следствие закона Кулона
- •Релятивистское преобразование магнитных и электрических полей
- •Пример 1
- •Пример 2
- •Рекомендуемая литература
- •Содержание
Ёмкость плоского конденсатора
Сообщим обкладкам плоского конденсатора
заряды +Qи –Q.
Плотность заряда на обкладках станет
равной,
а напряжённость однородного электрического
поля, возникшего в конденсаторе (см.
2.17):
.
Воспользовавшись связью напряжённости и потенциала в электрическом поле, вычислим разность потенциалов на обкладках конденсатора:
;
.
. (4.6)
Это соотношение и позволяет определить ёмкость плоского конденсатора
(4.7)
Ёмкость этого конденсатора прямо пропорциональна площади его обкладок (S) и обратно пропорциональна расстоянию (d) между ними.
Напомним, что разность потенциалов между обкладками была вычислена в предположении, что поле между ними однородное. Это означает, что результат (4.7) в известном смысле идеализация. Мы вычислили ёмкость плоского конденсатора, пренебрегая краевыми искажениями поля.
Ёмкость сферического конденсатора
Обкладками такого конденсатора являются две концентрические сферы радиусами R1иR2(рис. 4.10,b).
На прошлой лекции была вычислена разность потенциалов между обкладками сферического конденсатора. Она оказалась пропорциональна заряду конденсатора (см. 3.27).
Ёмкость, равная по определению отношению заряда к разности потенциалов, для сферического конденсатора, составит следующую величину
(4.8)
Этот результат свидетельствует о том, что ёмкость сферического конденсатора зависит от размеров сфер (R1иR2) и от величины зазораd(d=R1–R2) между ними.
Интересно, что при достаточно малом зазоре d, когдаR1R2 = R, можно записать ёмкость сферического конденсатора так:
Но 4R2=S— площадь поверхности сферы. Поэтому
и ёмкость сферического конденсатора оказывается равной ёмкости «эквивалентного» плоского конденсатора.
Ёмкость цилиндрического конденсатора
Сообщим обкладкам цилиндрического конденсатора заряды (+q) и (–q) (рис. 4.11.). Вычислим напряжённость поля между обкладками. Для этого выберем гауссову замкнутую поверхность в виде цилиндра радиусомR1<r<R2и высотойl. Пренебрегая краевыми эффектами (!), запишем уравнение теоремы Гаусса
Рис. 4.11.
Из последнего равенства заключаем, что
(4.9)
Теперь, воспользовавшись связью
напряжённости и потенциала электрического
поля
,
вычислим разность потенциалов между
обкладками цилиндрического конденсатора
Как и в случае других конденсаторов, разность потенциалов на обкладках цилиндрического конденсатора оказалась пропорциональной заряду q. Поэтому ёмкость конкретного цилиндрического конденсатора оказывается величиной постоянной, зависящей только от размеров этого конденсатора
(4.10)
Энергия электрического поля. Плотность энергии.
Будем заряжать плоский конденсатор, перенося малые порции заряда dqс одной обкладки на другую (рис. 4.12.) Для того чтобы перенести зарядdqмежду обкладками с разностью потенциалов (1–2) необходимо совершить работу
dA= (1–2)dq (4.11)
Рис. 4.12.
Учитывая, что
,
эту работу можно записать ещё и так
Для того чтобы первоначально незаряженному конденсатору сообщить заряд Q, необходимо совершить работу
Эта работа равна энергии заряженного конденсатора
(4.12)
Здесь
— напряжение на конденсаторе, равное
разности потенциалов на его обкладках.
Продолжим преобразования уравнения (4.12).
Вспомним, что ёмкость плоского конденсатора
,
а напряжение связано с напряжённостью электрического поля
U=E∙d
Воспользовавшись этими соотношениями, запишем энергию заряженного конденсатора в таком виде
(4.13)
Эти два выражения энергии конденсатора
приводят к следующему принципиальному вопросу: где в конденсаторе располагается энергия? Где она «локализована»?
Если она связана с электрическими зарядами, то она находиться на обкладках конденсатора. Если же это энергия электрического поля, то она занимает пространство между обкладками, объем которого равен объему конденсатора V=S∙d.
Для ответа на этот вопрос нужно было бы заряд с обкладок убрать, а поле при этом оставить. Тогда можно было бы посмотреть: осталась энергия — значит, она связана с полем, исчезла — значит, она располагалась вместе с зарядом на обкладках.
Но проблема-то в том, что при удалении зарядов исчезает, конечно, и их электростатическое поле. Поэтому вопрос о локализации энергии в рамках электростатики не может быть решён.
В электродинамике переменныеэлектрические и магнитные поля, как известно, могут существовать и без электрических зарядов. Причем такие поля обладают энергией, что является прямым экспериментальным доказательством того, что эта энергия связана с электрическими полями и локализована в объёме, занятом полем. Теперь становиться понятнее последнее выражение энергии заряженного конденсатора:
Энергия конденсатора связана с его электрическим полем и поэтому пропорциональна объёму конденсатора (V), то есть объёму поля.
Отношение
представляет собой среднее значение
энергии, приходящейся на единичный
объём поля
.
Эта характеристика энергетической насыщённости поля получила название «объёмная плотность энергии».
Обычно эта характеристика носит точечный, локальный характер. Вокруг заданной точки выбирают элементарный объём dVи вычисляют энергетическую плотность, деля энергию этой областиdWна её объём
(4.14)
Объёмная плотность энергии в заданной точке электрического поля пропорциональна квадрату напряжённости поля в этой точке. Измеряется объёмная плотность энергии, конечно, в Дж/м3:
.
Зная, как меняется плотность энергии в пространстве, можно вычислить энергию, сосредоточенную в объёме V, электрического поля:
.
Пример.
Проводящий шар радиусом Rнесет зарядQ. Какова энергия электрического поля этого шара?
Поле внутри заряженного шара отсутствует, а вне шара оно совпадает с полем точечного заряда:
,rR
Объёмная плотность энергии такого поля
Вычислим энергию, сосредоточенную в сферическом слое толщиной dr(рис. 4.13.)
Рис. 4.13.
Теперь просуммируем энергии всех слоёв от Rдо
Вспомним, что 40R=с— ёмкость шара (см. 4.4.), а— его потенциал. Тогда:
.
(4.15)
Эта энергия поля равна работе, которая
была совершена при зарядке шара до
потенциала 0=.
Покажем это.
Начнем заряжать шар, перенося на него
из бесконечности электрические заряды
малыми порциями dq.
Если в некоторый момент времени заряд
шара окажется равнымq,
а его потенциал —то при переносе следующей порции зарядаdqпридется совершить
работу против сил электрического поля
Теперь легко вычислить полную работу, которую необходимо проделать, чтобы передать первоначально незаряженному шару заряд Q:
Эта работа, как и ожидалось, равна энергии электрического поля, созданного нами при зарядке шара (см. 4.15).