Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Биохимия коллоквиум.doc
Скачиваний:
5
Добавлен:
16.12.2022
Размер:
214.02 Кб
Скачать

Вопрос 31).

Эйкозаноиды - это большая группа веществ, которые могут синтезироваться почти всеми типами клеток, за исключением эритроцитов, и как гормоны местного действия оказывают эффекты по паракринному или аутокринному механизму через специфические рецепторы. Главные биологические эффекты эйкозаноидов:

•  участвуют в регуляции сокращений гладкой мускулатуры (разные типы эйкозаноидов вызывают вазоконстрикцию или вазодилатацию, бронхоконстрикцию или бронходилатацию);

•  регулируют экскрецию воды и Na+ почками и артериальное давление;

•  участвуют в развитии воспаления;

•  регулируют свертываемость крови (табл. 8.8).

Синтез эйкозаноидов начинается после отделения жирной кислоты от фосфолипидов мембран под действием фермента фосфолипазы A2. Арахидоновая (или другая полиеновая) кислота переходит в цитозоль клетки и становится доступной для синтеза эйкозаноидов. Синтез основной группы эйкозаноидов - простагландинов, простациклинов и тромбоксанов - начинается с действия на полиеновую кислоту бифункционального фермента - простагландинсинтазы. Первый активный центр этого фермента - циклооксигеназа; он формирует 5-членное кольцо и присоединяет две молекулы кислорода, образуя нестабильный пероксид - первичный простагландин PGG2.

PGG2 быстро восстанавливается до PGH2 в положении 15 вторым активным центром - пероксидазой, использующей восстановленный глутатион как донор водорода. Последующие превращения PGH2 зависят от типа тканей.

Полиеновые жирные кислоты, содержащие 20 углеродных атомов и от 3 до 5 двойных связей, обычно соединены со вторым атомом глицерола фосфолипидов мембран, отделяются под действием фосфолипазы А2 и после этого становятся субстратами для синтеза разных типов эйкозаноидов. Главные пути синтеза эйкозаноидов - циклооксигеназный, приводящий к синтезу простагландинов и тромбоксанов, и липоксигеназный, приводящий к синтезу лейкотриенов

Вопрос 33.)

Известно, что направленность и тонкая регуляция процесса передачи информации обеспечиваются прежде всего наличием на поверхности клеток рецепторных молекул (чаще всего белков), узнающих гормональный сигнал. Этот сигнал рецепторы трансформируют в изменение концентраций внутриклеточных посредников, получивших название вторичных мессенджеров, уровень которых определяется активностью ферментов, катализирующих их биосинтез и распад.

По своей химической природе рецепторы почти всех биологически активных веществ оказались гликопротеинами, причем «узнающий» домен (участок)

17 Все ферменты являются белками и обладают всеми свойствами белков. Поэтому подобно белкам ферменты делятся на простые и сложные. Простые ферменты состоят только из аминокислот – например, пепсин , трипсин, лизоцим. Сложные ферменты имеют в своем составе белковую часть, состоящую из аминокислот – апофермент, и небелковую часть – кофактор (липиды, углеводы, витамины, ионы, например, металлов). Кофактор, в свою очередь, может называться коферментом ( не постоянная связь с ферментом) или простетической группой ( постоянно связан с ферментом). Для осуществления катализа необходим полноценный комплекс апобелка и кофактора, по отдельности катализ они осуществить не могут. Кофактор входит в состав активного центра, участвует в связывании субстрата или в его превращении. Как многие белки, ферменты могут быть мономерами, т.е. состоят из одной субъединицы, и полимерами, состоящими из нескольких субъединиц.

Соседние файлы в предмете Биохимия