Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Автоматизация технологических процессов и производств

..pdf
Скачиваний:
44
Добавлен:
15.11.2022
Размер:
12.46 Mб
Скачать

Математическое обеспечение САП позволяет автоматически определить не только опорные точки контура детали, но и опорные точки эквидистанты.

Ряд дополнительных сведений по САП дан в книге Сосонкина В.Л. «Программное управление технологическим оборудованием» (М.: Машиностроение, 1991. С. 153–195).

Разработка постпроцессоров является традиционной задачей: еще до появления CAD/CAM-систем постпроцессоры входили в состав САП (систем автоматизации программирования), выполнявших роль средств автоматизации разработки управляющих программ для станков с ЧПУ. Геометрия обрабатываемой детали и технология обработки описывались в САП в текстовой форме (например, на языке АРТ), после чего выполнялся расчет траектории движения инструмента. Для результирующего описания траектории обычно использовался стан-

дартный формат CLDATA (Cutter Locations DATA). Эти данные обра-

батывались постпроцессором, который формировал управляющую программу (УП) для конкретной модели станка с ЧПУ.

Казалось, что развитие систем ЧПУ приведет к такой унификации форматов УП, что сделает постпроцессоры ненужными. Однако по ряду причин этого не произошло. Основная из них – стремление изготовителей оборудования с ЧПУ обеспечить пользователей собственными средствами автоматизации «ручного» программирования, реализованными в системе ЧПУ. Унификация формата УП осталась на уровне стандарта ISO, который носит достаточно общий характер и не избавляет от необходимости разработки постпроцессоров. Таким образом, и сегодня постпроцессоры входят в виде модулей в состав CAD/CAM-систем (или САМ-систем, далее мы не будем делать различий).

Потребность в разработке большого числа постпроцессоров и значительная трудоемкость их разработки привели к появлению средств автоматизации проектирования постпроцессоров. Эти средства прошли свой путь развития – от библиотек стандартных подпрограмм до специальных автоматизированных систем (генераторов постпроцессоров).

101

Сегодня практически любая CAD/CAM-система имеет в своем составе собственные генераторы для автоматизации разработки постпроцессоров. Эти генераторы используют во многом общие идеи, но различаются, так сказать, глубиной их реализации. Проблема состоит в том, что для разработчиков CAD/CAM-систем автоматизация проектирования постпроцессоров является второстепенной задачей, а основные их усилия направлены на решение других задач, в большей степени влияющих на положение выпускаемого продукта на рынке.

Данная ситуация привела к появлению на рынке фирм, специализирующихся на разработке таких генераторов постпроцессоров, которые могли бы встраиваться в CAD/CAM-системы или использоваться в качестве автономных средств автоматизации. Понятно, что уровень автоматизации проектирования постпроцессоров, обеспечиваемый этими генераторами, должен быть существенно выше того, который предлагается разработчиками CAD/CAM.

Наиболее известной из таких фирм является компания IMS Software, Inc. (США), выпустившая на рынок универсальный генератор постпроцессоров IMSpost. Эта разработка наиболее полно реализует современные идеи в области проектирования постпроцессоров, а именно:

действия постпроцессора по преобразованию траектории инструмента в управляющую программу описываются на специальном языке высокого уровня, в котором имеется возможность оперировать параметрами траектории инструмента и управляющей программы как понятиями языка. Этим достигается максимальная гибкость проектирования при одновременной простоте и компактности программы действий постпроцессора;

параметры, определяющие формат кадра, начала и конца УП, подготовительные и вспомогательные функции и другие характеристики управляющей программы, задаются в специальных настроечных таблицах (диалоговых окнах), что дополнительно упрощает проектирование и модификацию (редактирование) постпроцессора. Во многих случаях для разработки нового постпроцессора достаточ-

102

но выполнить изменения в диалоговых окнах постпроцессора, взятого в качестве аналога;

с помощью специальных таблиц можно описать геометрию и взаимное расположение исполнительных органов и узлов станка с ЧПУ. Это обеспечивает автоматический расчет значений линейных и поворотных координат станка для каждого текущего положения инструмента, чем облегчается разработка постпроцессоров для многокоординатного оборудования с ЧПУ. Описание станка можно просматривать и редактировать в графическом режиме;

наиболее сложные алгоритмы постпроцессирования встроены в ядро IMSpost, что избавляет разработчика от необходимости решать такие задачи, как проблема нелинейности при многокоординатной обработке, замена серий «мелких» участков линейных перемещений на участки с круговой или сплайновой интерполяцией и др.

IMSpost позволяет быстро и эффективно создавать постпроцессоры для любых видов оборудования с ЧПУ – фрезерных обрабатывающих центров, многокоординатного оборудования, электроэрозионных и токарных станков. Генерируемые с помощью IMSpost постпроцессоры являются автономными системами и используют в качестве входной информации данные в формате CLDATA, которые подготавливаются CAM-системой. IMSpost адаптирован к фор-

матам CLDATA следующих CAD/CAM-систем: CATIA, Cimatron,

Euclid, MasterCAM, PowerMill, Pro/ENGINEER, SurfCAM, Uni - graphics.

В нашей стране успешный опыт использования генератора IMSpost накоплен в ОАО «Волгобурмаш» (г. Самара), где разрабатываемые постпроцессоры интегрируются в CAD/CAM-системы Unigraphics и Cimatron. Поставки IMSpost в России осуществляет компания «Би Питрон», которая предоставляет заказчику документацию на русском языке, выполняет обучение и обеспечивает сопровождение.

103

8.3. СИСТЕМЫ CAD/CAM

Впервые термин СAD прозвучал в конце 50-х годов прошлого века в Массачусетском технологическом институте в США. Распространение эта аббревиатура получила уже в 70-х годах как международное обозначение технологии конструкторских работ. С началом применения вычислительной техники под словом CAD подразумевалась обработка данных средствами машинной графики. Однако этот один термин не отражает всего того, что им иногда называют. Например, САПР могут предназначаться для: черчения, для прочерчивания (эскизирования) или и для того, и для другого сразу. Сама же аббревиатура CAD может расшифровы-

ваться так: Computer Aided Design или Computer Aided Drafting

(проектирование и конструирование с помощью ЭВМ или черчение с помощью ЭВМ). Понятия «конструирование» и «черчение с помощью ЭВМ» – всего лишь малая часть функций, выполняемых САПР. Многие из систем выполняют существенно больше функций, чем просто черчение и конструирование. И существует их более точное обозначение:

САЕ – Computer Aided Engineering (инженерные расчеты с помощью ЭВМ, исключая автоматизирование чертежных работ). Иногда этот термин использовался как понятие более высокого уровня – для обозначения всех видов деятельности, которую инженер может выполнять с помощью компьютера.

CAM – Computer Aided Manufacturing. Программирование уст-

ройств ЧПУ станков с помощью CAD-систем – отождествляют с понятием CAM (так называемые CAD/CAM-системы). В иных случаях под САМ понимают применение ЭВМ в управлении производством и движением материалов.

CAQ – Computer Aided Quality Assurance. Определяет поддержи-

ваемое компьютером обеспечение качества, прежде всего программирование измерительных машин.

САР – Computer Aided Planning – автономное проектирование технологических процессов, например при подготовке производства.

104

CIM – Computer Integrated Manufacturing – взаимодействие всех названных отдельных сфер деятельности производственного предприятия, поддерживаемого ЭВМ.

При традиционном проектировании оснастки трудоемкость работ составляет от 50 нормочасов до нескольких тысяч, а в общем – несколько миллионов нормочасов. Использование систем автоматизированного проектирования и изготовления оснастки позволяет не только снизить трудоемкость, временные и денежные затраты, но освободить человека от большого количества однообразной работы, например от оформления большей части документопотока.

CAD/CAM-системы находят применение в широком диапазоне инженерной деятельности, начиная с решения сравнительно простых задач проектирования и изготовления конструкторско-техноло- гической документации и кончая задачами объемного геометрического моделирования, ведением проекта, управлением распределенным процессом проектирования и т.п. Современные изделия можно создать только с использованием CAD/CAM-систем на всех стадиях проектирования, изготовления и эксплуатации.

Разработка и создание CAD/CAM-систем является достаточно сложным и длительным процессом, требует значительных затрат материальных и людских ресурсов. К сожалению, за последние годы государственная политика по отношению к коллективам, создающим CAD/CAM-системы, резко изменилась. Из-за отсутствия централизованного финансирования практически прекращены новые разработки в этой области. Значительное количество кол- лективов-разработчиков распалось. В результате, например, среди отечественных машиностроительных CAD-систем, поставляемых на рынок, продавалось не более пяти 2D-систем и не более однойдвух 3D-систем. Полностью отсутствовали системы для проектирования в радиоэлектронике, строительстве и архитектуре. В то же время значительные средства расходуются организациями на закупку дорогостоящих зарубежных CAD/CAM-систем. Пользователи на местах оказываются неподготовленными к применению этих

105

систем, и иногда случается, что в одной организации скапливаются несколько типов дублирующих друг друга систем, порой практически неэксплуатируемых.

Развитие отечественных CAD/CAM-систем и их широкое использование в промышленности позволит существенно сократить затраты на закупку таких систем за рубежом и тем самым поддержать собственные научные разработки в этой области.

Одной из основных задач, вставшей с появлением ЭВМ и оборудования с ЧПУ, является сокращение времени подготовки управляющей информации и уменьшение вероятности ошибок.

Впервые задача автоматизированного программирования для изготовления деталей на станках с ЧПУ была поставлена и решена Ассоциацией авиакосмической промышленности США в сотрудничестве с Массачусетским технологическим институтом в 1959–1961 годах. Был разработан специальный проблемно-ориентированный язык программирования АРТ (Automatic Programming Tools) и основанная на нем система программного обеспечения. Эта система рассчитана на применение достаточно мощной для того времени ЭВМ (IBM 360/370) и охватывает практически все возможные операции от 2 до многокоординатной обработки. По опыту использования этой системы в производстве получено снижение трудоемкости программирования практически в 10 раз. На базе этой системы, а также по аналогии во всех странах стало появляться бесконечное множество различного рода систем. Достаточно назвать некоторые из них: АРТ-1, АРТ-2, АРТ-3, и т.д.;

ЕХАРТ-1,2,3; ADAPT, AUTOPRESS, CLAM, COCOMAT и т.д.

Многие из них используются до сих пор с некоторыми доработками, с учетом развития вычислительной техники и адаптации этих систем к современным ЭВМ. САПР, как правило, состоит из языка описания геометрии детали, ее технологии, предпроцессора, процессора и постпроцессора.

Но разработки все новых и новых систем автоматизированного проектирования не прекратились. Современные САПР можно условно разделить на «легкие» и «тяжелые». Их различают по объему возможностей, а значит, и по требованиям к ЭВМ, на ко-

106

торой предполагается их использование. Различия могут выражаться в особенностях возможностей 2D (плоского) и 3D (объемного) проектирования, наличия возможности твердотельного моделирования, возможности вывода полученных данных на печать, станок с ЧПУ и т.п.

Ниже даны сведения по некоторым системам САD/CAM

на 2005 год (AutoCAD, bCAD, ГеММА-3D, ADEM, ГРАФИКА-81, БАЗИС 3.5, SOLID EDGE).

8.3.1. Система AutoCAD

AutoCAD – безусловно, самая широко известная, занимающая одно из ведущих мест в среде CAD/CAM система.

Компания Autodesk, которой мы обязаны этой разработкой, была основана в апреле 1982 года группой из 15 программистов. А уже осенью того же года на проходившей в Лас-Вегасе выставке Comdex компания объявила о создании новой программы, получившей название AutoCAD. Новый продукт начал продаваться на рынке в начале 1983 года и с того момента фактически стал одним из стандартов в области автоматизированного проектирования.

Успех системы AutoCAD в России, по-видимому, можно объяснить отчасти тем, что она предоставила инструментарий САПР пользователям ПК. Прежде любое упоминание об автоматизированном проектировании обычно связывалось с более мощными платформами, к примеру VAX-станциями производства Digital.

Естественно, AutoCAD была относительно недорогой системой, хотя ее функциональные возможности по сравнению с «настоящими» большими САПР оказались существенно ниже. Однако эти возможности постоянно нарастали по мере увеличения мощности ПК, а одновременно шел процесс освоения технологии САПР инженерами и конструкторами.

Распространению AutoCAD в России содействовала и маркетинговая политика компании. В то время как все известные САПР «разговаривали» только поанглийски, компания Autodesk рискнула выпустить русскую версию своего продукта. Причем несмотря на то (а может быть, как раз благодаря тому), что среди отечественных пользователей ходило немало нелегальных копий продукта.

В России Autodesk начала работать с 1986 года. В августе следующего года ЦНИИ промзданий при Госстрое был признан первым официальным центром подготовки специалистов по AutoCAD.

107

В октябре 1988 года появилась первая коммерческая версия AutoCAD 10 на русском языке. Среди маркетинговых шагов компании было решение о продаже этого продукта по специальным ценам. Так, если оригинальный вариант системы на английском языке стоил 3000 фунтов стерлингов, то цена русскоязычной версии составляла всего 1200 фунтов. Кроме того, в соответствии со специальной программой российские вузы могли приобрести AutoCAD 10 гораздо дешевле – за 240 фунтов стерлингов.

Несмотря на то, что к тому времени уже появились компьютеры на базе процессора Intel 80386 (поставки самого процессора начались в октябре 1985 года), для работы версии 10 AutoCAD было достаточно ПК, оснащенного процессором 80286 с частотой 6–10 МГц и сопроцессором 80287 оперативной памятью объемом 640 кбайт и жестким диском емкостью 40 Мбайт.

Для работы с AutoCAD версии 10 рекомендовалось использовать графический дисплей с диагональю 20 дюймов и разрешением 1024 768, поддерживающий 256 цветов.

Наличие большого числа прикладных программ для AutoCAD было обусловлено открытостью системы для пользователя. Сама программа была написана на языке AutoLISP, этот же язык использовался как средство расширения возможностей AutoCAD и создания дополнительных приложений.

8.3.2. СИСТЕМА bCAD

Известно, что большинство систем проектирования на ПК запускается как cad.exe. Аббревиатура CAD определяет сферу приложений, первые же символы определяют торговую марку разработчика. Одним словом, если есть А, то должно быть и B. Действительно, bCAD задумывалась, разрабатывалась и развивается как доступная альтернатива для тех, кто не может или не хочет позволить себе рабочее место дизайнера, проектировщика или архитектора за несколько тысяч (тем более десятков тысяч) долларов. Уместно употребить модный термин SOHO (small office – home office), т.е. дизайнерская студия для небольшого предприятия, службы продаж, рекламы или просто домашнее рабочее место архитектора, художника или, в конце концов, студента.

bCAD разрабатывалась как система для широкого спектра приложений, поэтому ее функциональность достаточно универсальна. Разносторонность системы достигается тем, что пакет объединяет в себе мощные компоненты для исполнения различных этапов проектных и дизайнерских работ: разработка технической документации в ее классическом виде – чертежей; построение объ-

108

емных моделей различных изделий и объектов по плоским эскизам; изготовление финальных чертежей по объемным моделям; подготовка статистических данных о проекте или данных для расчетных систем; получение реалистических изображений, изготовление анимированных презентаций.

Рассмотрим функциональные компоненты более подробно.

8.3.2.1. Плоское черчение

Любая система проектирования включает в себя инструменты, заменяющие кульман. Вопрос лишь в том, для чего это используется. В конце концов, любой проект должен быть реализован в металле, дереве или пластике, и не всегда (особенно в небольшом производстве) будет использоваться станок с ЧПУ, так что старый добрый чертеж еще долго будет необходим и исполнить его нужно по всем правилам.

Существенным отличием этой системы от других является возможность последующего изменения любых свойств чертежных элементов – цвета, типа и толщины линий, подробности построения дуг и криволинейных контуров, редактирование надписей, изменение шрифта и размеров символов, переопределение типа, шага и наклона штриховок. Все эти, прежде трудоемкие, операции исполняются за считанные секунды. Вспомогательные данные, используемые для построения чертежа (штриховые узоры, пунктиры, шрифты), будучи однажды использованы, сохраняются, что позволяет с легкостью архивировать и переносить проекты на другие компьютеры, не заботясь о том, что необходимый для редактирования элемент будет утерян.

Немаловажно, что все чертежные построения производятся в режиме

WYSIWIG (what you see is what you get – «что видишь, то и получаешь»), т.е.

изображение на экране максимально соответствует тому, что вы получите после вывода чертежа на плоттер или принтер. Это исключает досадные ошибки с назначением толщины и типа линий или масштаба штриховки. Наконец, интерактивный режим компоновки листа для печати облегчает финальную стадию – получение твердой копии чертежа.

8.3.2.2. Объемное моделирование

Трехмерная графика долгое время оставалась запретным плодом для большинства дизайнеров, работающих на ПК. Те 3D-системы, которые были доступны, как правило, ориентированы на презентационные задачи, рекламу и достаточно простую мультипликацию.

109

Многие пакеты САПР для ПК имеют 3D лишь в виде отдельных приложений, что часто неудобно в использовании. bCAD органически сочетает в себе возможности электронного кульмана и мастерской макетчика. Еще на этапе выполнения обычного плоского чертежа дизайнер строит (порой еще сам того не подозревая) настоящие трехмерные конструкции, вернее, их остов – образующие деталей вращения например. В дальнейшем, используя различные инструменты построения поверхностей, такой привычный плоский чертеж в считанные минуты превращается в пространственную модель детали или конструкции. Как и чертежные данные, объемные тела могут быть записаны в виде библиотек стандартных элементов и использованы в дальнейшем в других проектах. Ставшая сегодня уже традиционной система разделов или слоев (layers) позволяет легко разделить объемные и плоские данные на любом этапе работы – создании, редактировании, визуализации или получении твердых копий. Таким образом, файл проекта может содержать комплексную информацию о пространственной геометрии (в виде объемных моделей) и проектно-техно- логическую документацию (в виде чертежных данных).

8.3.2.3. Генерация чертежей

Каждый элемент этой модели точно описывает геометрию будущего изделия. Совершенно логичным было бы использовать эти данные для автоматизации построения чертежей, схем, планов расположения оборудования и расстановки мебели. bCAD предоставляет такую возможность. Достаточно выбрать вид, и соответствующая проекция, в том числе и перспективная, будет построена автоматически.

В отличие от традиционного алгоритма удаления невидимых линий, который создает изображение, полное лишних отрезков, в bCAD используется оригинальная технология IntelliHIDE, которая позволяет не только избавиться от ненужных элементов изображения, но и сохранит линии невидимого контура. Полученные проекции представляют собой не что иное, как обычный чертеж, который после внесения небольших изменений (простановка размеров, выбор цвета, стиля и ширины линий) может быть оформлен как самостоятельный документ либо использован как фрагмент более сложного многовидового чертежа.

8.3.2.4. Статистика и расчет

Проектирование далеко не всегда ограничивается построением геометрических моделей. Очень часто требуется произвести прочностные, тепловые рас-

110

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]