Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Общая энергетика

..pdf
Скачиваний:
15
Добавлен:
15.11.2022
Размер:
4.01 Mб
Скачать

надежности ТВЭЛов. Помимо этого условия работы ТВЭЛов осложняются высокой рабочей температурой, достигающей 300–600 °С на поверхности оболочки, возможностью тепловых ударов, вибрацией, наличием потока нейтронов (флюенс достигает 102 нейтрон/м2).

К ТВЭЛам предъявляются высокие технические требования:

1)простота конструкции;

2)механическая устойчивость и прочность в потоке теплоносителя, обеспечивающая сохранение размеров и герметичности;

3)малое поглощение нейтронов конструкционным материалом ТВЭЛа и минимум конструкционного материала

вактивной зоне;

4)отсутствие взаимодействия ядерного топлива и продуктов деления с оболочкой ТВЭЛов, теплоносителем и замедлителем при рабочих температурах.

Геометрическая форма ТВЭЛа должна обеспечивать требуемое соотношение площади поверхности и объема и максимальную интенсивность отвода теплоты теплоносителем от всей поверхности ТВЭЛа, а также гарантировать большую глубину выгорания ядерного топлива и высокую степень удержания продуктов деления. ТВЭЛы должны обладать радиационной стойкостью, иметь требуемые размеры и конструкцию, обеспечивающие возможность быстрого проведения перегрузочных операций; обладать простотой и экономичностью регенерации ядерного топлива и низкой стоимостью.

В целях безопасности надежная герметичность оболочек ТВЭЛов должна сохраняться в течение всего срока работы активной зоны (3–5 лет) и последующего хранения отработавших ТВЭЛов до отправки на переработку (1–3 года). При проектировании активной зоны необходимо заранее установить и обосновать допустимые пределы повреждения ТВЭ-

161

Лов (количество и степень повреждения). Активная зона проектируется таким образом, чтобы при работе на протяжении всего ее расчетного срока службы не превышались установленные пределы повреждения ТВЭЛов. Выполнение указанных требований обеспечивается конструкцией активной зоны, качеством теплоносителей, характеристиками и надежностью системы теплоотвода. В процессе эксплуатации возможно нарушение герметичности оболочек отдельных ТВЭЛов. Различают два вида такого нарушения: образование микротрещин, через которые газообразные продукты деления выходят из ТВЭЛа в теплоноситель (дефект типа газовой плотности); возникновение дефектов, при которых возможен прямой контакт топлива с теплоносителем.

Условия работы ТВЭЛов в значительной мере определяются конструкцией активной зоны, которая должна обеспечивать проектную геометрию размещения ТВЭЛов и необходимое с точки зрения температурных условий распределение теплоносителя. Через активную зону при работе реактора должен поддерживаться стабильный расход теплоносителя, гарантирующего надежный теплоотвод.

Активная зона должна быть оснащена датчиками внутриреакторного контроля, которые дают информацию о распределении мощности, нейтронного потока, температурных условиях ТВЭЛов и расходе теплоносителя.

Активная зона энергетического реактора должна быть спроектирована так, чтобы внутренний механизм взаимодействия нейтронно-физических и теплофизических процессов при любых возмущениях коэффициента размножения устанавливал новый безопасный уровень мощности. Практически безопасность ядерной энергетической установки обеспечивается, с одной стороны, устойчивостью реактора (уменьшением коэффициента размножения с ростом температуры и мощности активной зоны), а с другой стороны – надежностью системы автоматического регулирования и защиты.

162

С целью обеспечения безопасности конструкция активной зоны и характеристики ядерного топлива должны исключать возможность образования критических масс делящихся материалов при разрушении активной зоны и расплавлении ядерного топлива. При конструировании активной зоны должна быть предусмотрена возможность введения поглотителя нейтронов для прекращения цепной реакции в любых случаях, связанных с нарушением охлаждения активной зоны.

Активная зона, содержащая большие объемы ядерного топлива для компенсации выгорания, отравления и температурного эффекта, имеет как бы несколько критических масс. Поэтому каждый критический объем топлива должен быть обеспечен средствами компенсации реактивности. Они должны размещаться в активной зоне таким образом, чтобы исключить возможность возникновения локальных критических масс.

3.2.6. Экономические аспекты атомной энергетики

С экономической точки зрения ядерная энергетика специфична. Ей свойственны, по крайней мере, две кардинальные особенности. Первая особенность связана с большими капиталовложениями. Вторая особенность – специфика использования ядерного топлива, которая существенно отличается от той, что присуща обычному химическому топливу. К сожалению, до сих пор не сложилось единого мнения о том, как следует учитывать эти особенности в экономических расчетах.

Существовавший до середины 1980-х годов оптимизм в прогнозах развития ядерной энергетики определялся в основном представлениями об умеренной капиталоемкости АЭС, которые зачастую были продиктованы соображениями политического плана.

163

Известно [2, 3], что удельные капиталовложения в АЭС значительно выше, чем в обычные электростанции, особенно это касается АЭС с реакторами на быстрых нейтронах.

Это связано в первую очередь со сложностью технологической схемы АЭС: используются двух- и даже трехконтурные системы отвода тепла из реактора. Создается специальная система гарантированного аварийного расхолаживания. Предъявляются высокие требования к конструкторским материалам (ядерная чистота). Изготовление оборудования и его монтаж ведутся в особо строгих, тщательно контролируемых условиях (реакторная технология). К тому же термический КПД на используемых в настоящее время в России АЭС с тепловыми реакторами заметно ниже, чем на обычных тепловых станциях.

Другим важным вопросом является то, что в ТВЭЛах внутри реактора постоянно содержится значительное количество ядерного топлива, необходимого для создания критической массы. Следует ли включать в капиталовложения стоимость первой загрузки ядерного топлива? Если да, то в капиталовложения следует включать не только топливо, находящееся в самом реакторе, но и занятое во внешнем топливном цикле. Такой подход нельзя считать правильным. Ведь в любом производстве одни элементы оборудования находятся в постоянной эксплуатации, а другие материальные средства службы регулярно заменяются новыми. Если этот срок не слишком велик, их стоимость не причисляют к капиталовложениям. Эти затраты учитываются в качестве текущих затрат. В случае с ТВЭЛами в пользу этого свидетельствует период их использования, который не превышает нескольких месяцев.

Важным является также вопрос о цене ядерного топлива. Если речь идет только об уране, то его стоимость определяется затратами на добычу, извлечение из руды, изотопное обогащение (если таковое необходимо).

164

Если топливом является плутоний, который используется для быстрых реакторов, то в общем случае следует различать два режима: замкнутый, когда плутония достаточно для обеспечения потребностей развивающейся энергетики, и конверсионный, когда его не хватает, и наряду с ним используется U235. Для случая конверсионного цикла цена плутония должна определяться из сопоставления с известной ценой урана. В любом быстром реакторе можно использовать как плутониевое, так и урановое топливо. Поэтому при экономическом сопоставлении влияния эффекта вида топлива на капитальную составляющую стоимости электроэнергии можно исключить. Достаточно лишь приравнять непосредственные затраты на топливо (топливные составляющие) в том и другом случае. По оценкам специалистов цена плутония превосходит цену урана примерно на 30 %. Для плутония это обстоятельство важно, поскольку нарабатываемый плутоний как побочный продукт приносит большой доход.

В замкнутом режиме, когда плутония образуется достаточно для загрузки в существующие и вновь вводимые реакторы, необходимость в использовании U235 отпадает. В случае если его нарабатывается (образуется) больше, чем нужно для обеспечения потребностей развивающейся энергетики, его можно полностью или частично использовать для других областей его потенциального применения. В этом случае цена плутония будет определяться затратами на его извлечение из ТВЭЛов.

Стоимость 1 кВт установленной мощности на АЭС с блоками 440 и 1000 МВт в 1,5–1,6 раза выше, чем на электростанциях, работающих на органическом топливе, равной мощности, построенных в те же годы [2]. Можно полагать, что в ближайшие годы соотношение стоимости 1 кВт установленной мощности на АЭС и на ТЭС будет иметь тенденцию к увеличению, так как для обеспечения большей надежности атомной электростанции и уменьшения влияния на

165

окружающую среду строительство АЭС потребует больших дополнительных капиталовложений, чем строительство ТЭС. Однако себестоимость электроэнергии на АЭС в целом ниже, чем на тепловых конденсационных электрических станциях.

3.2.7. Экология атомной энергетики

Использование реакции деления тяжелых ядер для производства энергии сопровождается вредными факторами, потенциально опасными для биосферы Земли. Наиболее вредный фактор – радиоактивное загрязнение.

Атомная промышленность как одна из составляющих ТЭК России включает в себя предприятия по добыче и переработке уранового сырья, обогащению урана, заводы по изготовлению ТВЭЛов, атомные электростанции, радиохимические заводы по регенерации отработанного топлива, предприятия по переработке и хранению радиоактивных отходов. Радиационное воздействие на окружающую среду возможно на всех этих предприятиях. Наиболее сложные проблемы радиационной безопасности связаны с АЭС.

При нормальной работе АЭС и предприятий ядерного топливного цикла скорость выброса радиоактивных продуктов в окружающую среду тщательно контролируется. Содержащиеся в воздухе радиоактивные нуклиды благородных газов криптона, ксенона, радона, трития, а также присутствие аэрозолей топлива и продуктов деления определяют наличие ионизирующего излучения в воздухе.

Жидкие радиоактивные выбросы, попадающие в реки, большие озера или океан, содержат тритий, продукты деления ядер и другие вещества.

Человек, в общем случае, может подвергаться следующим воздействиям ионизирующего излучения:

1) внешнему бета- и гамма-излучению при распаде газообразных радиоактивных нуклидов, содержащихся в атмосфере или в воде; 166

2)облучению при распаде осевших на землю радиоактивных аэрозольных частиц;

3)внутреннему облучению при вдыхании радиоактивных нуклидов (ингаляционному облучению);

4)внутреннему облучению в результате потребления загрязненной радиоактивными нуклидами пищи или воды.

Скорость и уровень выхода радиоактивных нуклидов

вокружающую среду зависят от механизмов удержания этих нуклидов, которые, в свою очередь, определяются конструкцией защитных устройств технологического оборудования топливного цикла. Совокупность взаимосвязанных герметизированных объемов (так называемых барьеров безопасности с низким уровнем утечки) и другие технические меры позволяют обеспечить очень высокие коэффициенты удержания радиоактивных веществ или, иначе, низкие коэффициенты радиоактивных выбросов в окружающую среду.

Так же как и в других энергоустановках, в которых происходит преобразование тепловой энергии в электрическую,

вАЭС необходимо сбрасывать часть теплоты, выделяемой при сгорании топлива. В стандартных АЭС, в которых электроэнергия производится паротурбогенераторами, тепловой сброс осуществляется водой, охлаждающей конденсаторы. Эта вода забирается из реки, озера или моря.

Для того чтобы уменьшить вредное воздействие на экологию реки или озера, из которых забирается вода, особенно при жарком климате, когда окружающая температура уже достаточно высока, может оказаться необходимым применение некоторых технических методов локальной защиты от перегрева водных источников. Среди этих методов: увеличение расхода охлаждающей воды в конденсаторе, создание прудов охлаждения и градирен.

167

3.2.8.Перспективы развития ядерной

итермоядерной энергетики

Как было показано выше, тип реактора является определяющим для любой ядерной энергетической установки. Исходя из перспектив глобального преобразования мировой энергетики, наиболее перспективными можно считать, пожалуй, пять основных известных в настоящее время науке типов реакторов [2, 4].

1.Высокотемпературный энергетический ядерный реактор на газообразном топливе (ГФЯР), являющийся реак-

тором на тепловых нейтронах, в котором делящееся вещество

всоставе газообразного гексафторида урана или в виде испаренного металлического урана расположено в центральной зоне полости (цилиндрической или сферической), образованной твердым замедлителем-отражателем нейтронов (Be, ВеО, С или их комбинацией).

Перспективность ГФЯР связана со следующим: возможность получения большой мощности; коэффициент воспроизводства, превышающий единицу; высокая температура нагрева рабочей среды (более 10 000 К); малая критическая масса (десятки килограммов делящегося вещества); возможность циркуляции делящегося вещества и его очистка в системе циркуляции.

Из этого следует: высокая эффективность использования горючего; минимальные затраты на топливный цикл; повышенная безопасность; высокая экономичность; широкий диапазон использования.

2.Вихревые ядерные реакторы на тепловых и быстрых нейтронах. Вихревой реактор состоит из вихревой камеры, внутри которой в процессе вихревого движения введенного тангенциально теплоносителя образуется устойчивый

центробежный кипящий слой мелкодисперсного твердого и жидкого ядерного топлива. Благодаря целому ряду поло-

168

жительных свойств этого слоя энергетический вихревой ядерный реактор обладает некоторыми преимуществами по сравнению с реакторами с фиксированными активными зонами. С помощью этого типа реакторов с высоким коэффициентом воспроизводства на быстрых нейтронах можно коренным образом изменить структуру топливного баланса и создать возможность практически неограниченного развития ядерной энергетики, поскольку преодолевается кризис ресурсов природного урана в будущем.

3. Электроядерный бридинг. Сущность заключается в использовании мощного пучка заряженных частиц (протонов) высокой энергии, получаемого с помощью ускорителя, для бомбардировки мишеней из бериллия, тория, урана. В результате возникают мощные источники нейтронов, которые можно использовать для переработки уранового и ториевого сырья в делящиеся материалы, т.е. для производства ядерного топлива.

4.Пароводяной реактор-размножитель на быстрых нейтронах (БПВР). Реактор аналогичен ВВЭР.

5.Энергетический термоядерный реактор (ТОКОМАК).

Существует пока в виде исследовательской установки, на которой отрабатываются лишь основные принципы термоядерного синтеза. Практическая реализация управляемой термоядерной реакции сопряжена в настоящее время с рядом физических и технических трудностей.

Основная трудность физического характера сопряжена с неустойчивостью плазмы, помещенной в магнитную ловушку.

Трудности технического характера (наличие примесей

сбольшими порядковыми номерами) приводят к возрастанию энергетических потерь из плазмы.

Для решения этих проблем необходимо проанализировать возможность осуществления термоядерного синтеза, при котором отношение выходной энергии реакции синтеза

169

к энергии, затраченной на создание, нагрев и удержание плазмы, по крайней мере, равно единице. Это может потребовать создания экспериментальной термоядерной электростанции.

4. ГИДРОЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ

4.1. Гидростатика и гидродинамика

Гидростатика – раздел гидромеханики жидкостей, в котором изучаются равновесие жидкости и воздействие покоящейся жидкости на погруженные в нее тела. Одной из основных задач гидростатики является изучение распределения давления в жидкости для обеспечения условий ее равновесия. Зная распределение давления, можно на основании законов гидростатики рассчитать силы, действующие со стороны покоящейся жидкости на погруженные в нее тела, например на стену плотины гидроэлектростанции (ГЭС).

Одним из основных законов гидростатики является закон Архимеда. Применительно к гидротехническим сооружениям имеет практическое значение определение силы, действующей на некоторую поверхность, погруженную в жидкость. В этом случае сила давления P сводится к одной равнодействующей силе, равной весу столба жидкости, который был бы над стенкой, если бы оно лежало горизонтально на глубине центра тяжести смоченной площади:

P g hц.т S p0S,

(4.1)

где ρ – плотность жидкости;

g – ускорение свободного падения;

hц.т – глубина центра тяжести смоченной плоскости;

p0 – внешнее давление на свободную поверхность воды; S – площадь смоченной поверхности стенки.

170