Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Общая энергетика

..pdf
Скачиваний:
15
Добавлен:
15.11.2022
Размер:
4.01 Mб
Скачать

При неблочной схеме ТЭС пар от всех паровых котлов поступает в общую магистраль и лишь оттуда распределяется по отдельным турбинам. В ряде случаев имеется возможность направлять пар непосредственно от паровых котлов к турбинам, однако общая соединительная магистраль при этом сохраняется, поэтому всегда можно использовать пар от всех котлов для питания любой турбины. Линии, по которым вода подается в паровые котлы (питательные трубопроводы), также имеют поперечные связи.

Блочные ТЭС дешевле неблочных, так как упрощается схема трубопроводов, сокращается количество арматуры. Управлять отдельными агрегатами на такой станции проще, установки блочного типа легче автоматизировать. В эксплуатации работа одного блока не отражается на соседних блоках. При расширении электростанции последующий блок может иметь другую мощность и работать на новых параметрах. Это дает возможность на расширяемой станции устанавливать более мощное оборудование с более высокими параметрами, т.е. позволяет совершенствовать оборудование и повышать техни- ко-экономические показатели электростанции. Процессы наладки нового оборудования при этом не отражаются на работе ранее установленных агрегатов. Однако для нормальной эксплуатации блочных ТЭС надежность их оборудования должна быть значительно выше, чем на неблочных. В блоках нет резервных паровых котлов; если возможная производительность котла выше необходимого для данной турбины расхода, часть пара (так называемый скрытый резерв, который широко используется на неблочных ТЭС) здесь нельзя перепустить на другую установку. Для паротурбинных установок с промежуточным перегревом пара блочная схема является практически единственно возможной, так как неблочная схема станции в этом случае окажется чрезмерно сложной.

91

В нашей стране паротурбинные установки ТЭС без регулируемых отборов пара с начальным давлением P0 8,8 МПа и установки с регулируемыми отборами при P0 12,7 МПа, работающие по циклам без промежуточного перегрева пара, строятся неблочными. При более высоких давлениях (на КЭС при P0 12,7 МПа, а на ТЭЦ при P0 = 23,5 МПа) все паротурбинные агрегаты работают по циклам с промежуточным перегревом, и станции с такими установками строят блочными.

В главном здании (главном корпусе) размещают основное и вспомогательное оборудование, непосредственно используемое в технологическом процессе электростанции. Взаимное расположение оборудования и строительных кон-

струкций называют компоновкой главного здания электро-

станции (рис. 3.6, 3.7).

На рис. 3.6 приведена компоновочная схема энергоблока пылеугольной электростанции: I – помещение парогенераторов; II – машинный зал, III – насосная станция охлаждающей воды; 1 – разгрузочное устройство; 2 – дробильная установка; 3 – водяной экономайзер и воздухоподогреватель; 4 – пароперегреватели; 5, 6 – топочная камера; 7 – пылеугольные горелки; 8 – парогенератор; 9 – мельничный вентилятор; 10 – бункер угольной пыли; 11 – питатели пыли; 12 – трубопроводы пара промежуточного перегрева; 13 – деаэратор; 14 – паровая турбина; 15 – электрический генератор; 16 – повышающий электрический трансформатор; 17 – конденсатор; 18 – подающие и сливные трубопроводы охлаждающей воды; 19 – конденсатные насосы; 20 – регенеративные ПНД; 21 – питательный насос; 22 – регенеративные ПВД; 23 – дутьевой вентилятор; 24 – золоуловитель; 25 – шлакосмывные и золосмывные каналы; ЭЭ – электроэнергия высокого напряжения.

В условиях теплого климата (например, на Кавказе, в Средней Азии и др.), при отсутствии значительных атмосферных осадков, пылевых бурь и т.п. на КЭС, особенно газомазут-

92

ных, применяют открытую компоновку оборудования. При этом над котлами устраивают навесы, турбоагрегаты защищают

схема размещения оборудования и сооружений энергоблока

пылеугольной электростанции

Рис. 3.6. Пространственная

 

93

легкими укрытиями; вспомогательное оборудование турбоустановки размещают в закрытом конденсационном помещении. Удельная кубатура главного корпуса КЭС с открытой компоновкой снижается до 0,2–0,3 м3/кВт, что удешевляет сооружение КЭС. В помещениях электростанции устанавливают мостовые краны и другие грузоподъемные механизмы для монтажа и ремонта энергетического оборудования.

На рис. 3.7 приведена упрощенная компоновочная схема газомазутной электростанции мощностью 2400 МВт с указанием размещения только основного и части вспомогательного оборудования, а также габаритов сооружений (м): 1 – котельное отделение; 2 – турбинное отделение; 3 – конденсаторное отделение; 4 – генераторное отделение; 5 – деаэраторное отделение; 6 – дутьевой вентилятор; 7 – регенеративные воздухоподогреватели; 8 – распредустройство собственных нужд (РУСН); 9 – дымовая труба.

Рис. 3.7. Компоновка главного корпуса газомазутной электростанции мощностью 2400 МВт

Основное оборудование КЭС (котельные и турбинные агрегаты) размещают в главном корпусе, котлы и пылеприго-

94

товительную установку (на КЭС, сжигающих, например, уголь в виде пыли) – в котельном отделении, турбоагрегаты и их вспомогательное оборудование – в машинном зале электростанции. На КЭС устанавливают преимущественно по одному котлу на турбину. Котел с турбоагрегатом и их вспомогательным оборудованием образуют отдельную часть – моноблок электростанции.

Для турбин мощностью 150–1200 МВт требуются котлы производительностью соответственно 500–3600 м3/ч пара. Ранее на ГРЭС применяли по два котла на турбину, т.е. дубль-блоки. На КЭС без промежуточного перегрева пара с турбоагрегатами мощностью 100 МВт и меньше применяли неблочную централизованную схему, при которой пар из котлов отводится в общую паровую магистраль, а из нее распределяется между турбинами.

Размеры главного корпуса зависят от мощности размещаемого в нем оборудования: длина одного блока 30–100 м, ширина 70–100 м. Высота машинного зала около 30 м, котельной – 50 м и более. Экономичность компоновки главного корпуса оценивают приближенно удельной кубатурой, равной на пылеугольной КЭС около 0,7–0,8 м3/кВт, а на газомазутной – около 0,6–0,7 м3/кВт. Часть вспомогательного оборудования котельной (дымососы, дутьевые вентиляторы, золоуловители, пылевые циклоны и сепараторы пыли системы пылеприготовления) устанавливают вне здания, на открытом воздухе.

КЭС сооружают непосредственно у источников водоснабжения (река, озеро, море); часто рядом с КЭС создают водохранилище (пруд). На территории КЭС, кроме главного корпуса, размещают сооружения и устройства технического водоснабжения и химводоочистки, топливного хозяйства, электрические трансформаторы, распределительные устройства, лаборатории и мастерские, материальные склады, служебные помещения для персонала, обслуживающего КЭС.

95

Топливо на территорию КЭС подается обычно железнодорожными составами. Золу и шлаки из топочной камеры и золоуловителей удаляют гидравлическим способом. На территории КЭС прокладывают железнодорожные пути и автомобильные дороги, сооружают выводы линий электропередачи, инженерные наземные и подземные коммуникации. Площадь территории, занимаемой сооружениями КЭС, составляет, в зависимости от мощности электростанции, вида топлива и других условий, 25–70 га.

Крупные пылеугольные КЭС в России обслуживаются персоналом из расчета 1 чел. на каждые 3 МВт мощности (примерно 1000 чел. на КЭС мощностью 3000 МВт); кроме того, необходим ремонтный персонал.

Мощность КЭС зависит от водных и топливных ресурсов, а также требований охраны природы: обеспечения нормальной чистоты воздушного и водного бассейнов. Выбросы с продуктами сгорания топлива твердых частиц в воздух в районе действия КЭС ограничиваются установкой совершенных золоуловителей (электрофильтров с КПД около 99 %). Оставшиеся примеси, окислы серы и азота рассеиваются с помощью высоких дымовых труб, которые сооружаются для вывода вредных примесей в более высокие слои атмосферы. Дымовые трубы высотой до 300 м и более сооружают из железобетона или с 3–4 металлическими стволами внутри железобетонной оболочки или общего металлического каркаса.

Управлять многочисленным разнообразным оборудованием КЭС возможно только путем комплексной автоматизации производственных процессов. Современные конденсационные турбины полностью автоматизированы. В котлоагрегате автоматизировано управление процессами горения топлива, питания котлоагрегата водой, поддержания температуры перегрева пара и т.д. Автоматизированы и другие процессы КЭС: поддержание заданных режимов эксплуата-

96

ции, пуск и остановка блоков, защита оборудования при ненормальных и аварийных режимах.

3.1.4.Основное оборудование ТЭС

Косновному оборудованию ТЭС относятся паровые кот-

лы (парогенераторы), турбины, синхронные генераторы, трансформаторы.

Все перечисленные агрегаты стандартизованы по соответствующим показателям. Выбор оборудования определяется в первую очередь типом электростанции и ее мощностью. Практически все вновь проектируемые электростанции – блочные, их основной характеристикой является мощность турбоагрегатов.

В настоящее время выпускаются серийные отечественные конденсационные энергоблоки ТЭС мощностью 200, 300, 500, 800 и 1200 МВт. На ТЭЦ наряду с блоками мощностью 250 МВт используются турбоагрегаты мощностью 50,

100 и 175 МВт, у которых блочный принцип сочетается с отдельными поперечными связями оборудования.

При заданной мощности электростанции номенклатура оборудования, включаемого в состав энергоблоков, выбирается по его мощности, параметрам пара и виду используемого топлива.

3.1.4.1. Паровые котлы

Паровой котел (ПК) – теплообменный аппарат для получения пара с давлением, превышающим атмосферное, образующий вместе со вспомогательным оборудованием ко-

тельный агрегат.

Характеристиками ПК являются:

паропроизводительность;

рабочие параметры пара (температура и давление) после первичного и промежуточного перегревателей;

97

поверхность нагрева, т.е. поверхность, с одной стороны омываемая дымовыми газами, а с другой – питательной водой;

КПД, т.е. отношение количества тепла, содержащегося

впаре, к теплотворной способности топлива, израсходованного для получения этого пара.

Расход пара на турбину устанавливается обычно для зимнего режима работы электростанции. Производительность парового котла должна выбираться с учетом увеличения расхода пара на турбину вследствие повышения давления в конденсаторе в летнее время года, утечек пара и конденсата, включения сетевых установок для отпуска теплоты и других расходов. В соответствии с этим производительность парового котла выбирается по максимальному пропуску свежего пара через турбину с учетом расхода пара на собственные нужды электростанции и обеспечения некоторого запаса для использования вращающегося резерва и других целей.

Характерными для ПК являются также вес, габариты, расход металла и имеющееся оборудование для механизации и автоматизации обслуживания.

Первые ПК имели шарообразную форму. Такую форму имел и ПК, построенный в 1765 году И. Ползуновым, создавшим первую универсальную паровую машину и тем самым положившим начало энергетическому использованию водяного пара. Сначала ПК изготовлялись из меди, затем из чугуна. В конце XVIII века уровень развития черной металлургии дал возможность изготовить стальные цилиндрические ПК из листового материала путем склепывания. Постепенные изменения в конструкциях ПК привели к многочисленным разновидностям. Цилиндрический котел, имевший диаметр до 0,9 м и длину 12 м, монтировался с помощью кирпичной обмуровки, в которой выкладывались все газовые

98

каналы. Поверхность нагрева такого ПК образовывалась лишь в нижней части котла.

Стремление к повышению параметров ПК привели к увеличению габаритов и увеличению числа потоков воды и пара. Увеличение числа потоков пошло по двум направлениям: разработке газотрубных котлов, в частности локомобильных газотрубных паровых котлов, и разработке водотрубных котлов, являющихся основой современных котельных агрегатов. Увеличение поверхности нагрева водотрубных котлов сопровождалось увеличением габаритов и, в первую очередь, высоты ПК. КПД ПК достиг 93–95 %.

Первоначально водотрубные ПК представляли собой ПК только барабанного типа, в которых пучки прямых или изогнутых труб (змеевики) сочетались с цилиндрическими стальными барабанами (рис. 3.8).

Рис. 3.8. Принципиальная схема ПК барабанного типа: 1 – топочная камера; 2 – горелка; 3 – экранные трубы; 4 – барабан; 5 – опускные трубы; 6 – пароперегреватель; 7 – вторичный (промежуточный) пароперегреватель; 8 – экономайзер; 9 – воздухоподогреватель

99

В топочной камере 1 расположены горелки 2, через которые в топку поступает смесь топлива с подогретым воздухом. Число и тип горелок зависят от их производительности, мощности блока и вида топлива. Наиболее распространены три вида топлива: уголь, природный газ и мазут. Уголь предварительно превращается в угольную пыль, которая с помощью воздуха вдувается через горелки в топку.

Стены топочной камеры изнутри покрыты трубами (экраны) 3, которые воспринимают тепло от горячих газов. В экранные трубы вода поступает по опускным необогреваемым трубам 5 из барабана 4, в котором постоянно поддерживается заданный уровень. В экранных трубах вода закипает и в виде пароводяной смеси движется вверх, попадая затем в паровое пространство барабана. Таким образом, при работе котла возникает естественная циркуляция воды с паром в контуре: барабан – опускные трубы – экранные трубы – барабан. Поэтому котел, изображенный на рис. 3.8, называется барабанным котлом с естественной циркуляцией. Отвод пара к турбине восполняется подачей в барабан котла питательной воды с помощью насосов.

Пар, поступивший из экранных труб в паровое пространство барабана, является насыщенным и в таком виде, хотя и имеет полное рабочее давление, еще не пригоден для использования его в турбине, так как обладает относительно небольшой работоспособностью. Кроме того, влажность насыщенного пара при расширении в турбине возрастает до пределов, опасных для надежности рабочих лопаток. Поэтому из барабана пар направляется в перегреватель 6, где ему сообщается дополнительное количество тепла, за счет чего он из насыщенного становится перегретым. При этом температура его повышается примерно до 560 °С и, соответственно, увеличивается его работоспособность. В зависимости от места расположения пароперегревателя в котле и, следовательно, от вида теплообмена, осуществляющегося в нем,

100