Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Общая энергетика

..pdf
Скачиваний:
15
Добавлен:
15.11.2022
Размер:
4.01 Mб
Скачать

различают радиационные, ширмовые (полурадиационные) и конвективные пароперегреватели.

Радиационные пароперегреватели размещают на потол-

ке топочной камеры или же на стенках ее, часто между трубами экранов. Они, как и испарительные экраны, воспринимают тепло, излучаемое факелом сжигаемого топлива. Ширмовые пароперегреватели, выполненные в виде отдельных плоских ширм из параллельно включенных труб, укрепляются на выходе из топки перед конвективной частью котла. Теплообмен в них осуществляется как излучением, так и конвекцией. Конвективные пароперегреватели располагают в газоходе котлоагрегата обычно за ширмами или за топкой; они представляют собой многорядные пакеты из змеевиков. Пароперегреватели, состоящие только из конвективных ступеней, обычно устанавливают в котлоагрегатах среднего и низкого давления при температуре перегретого пара не выше 440–510 °С. В котлоагрегатах высокого давления со значительным перегревом пара применяют комбинированные пароперегреватели, включающие в себя конвективную, ширмовую, а иногда и радиационную части.

При давлении пара в 14 МПа (140 кгс/см2) и выше обычно за первичным перегревателем устанавливают вторичный (промежуточный) перегреватель 7. Он, так же как и первичный, образован из стальных труб, согнутых в змеевики. Сюда направляется пар, отработавший в цилиндре высокого давления (ЦВД) турбины и имеющий температуру, близкую к температуре насыщения при давлении 2,5–4 МПа. Во вторичном (промежуточном) пароперегревателе температура этого пара снова повышается до 560 °С, соответственно увеличивается его работоспособность, после чего он проходит через цилиндр среднего давления (ЦСД) и цилиндр низкого давления (ЦНД), где расширяется до давления отработавшего пара (0,003–0,007 МПа). Применение промежуточного перегрева пара, несмотря на усложнение конструкции котла и турбины

101

и значительное увеличение количества паропроводов, имеет большие экономические преимущества по сравнению с котлами без промежуточного перегрева пара. Расход пара на турбину уменьшается примерно вдвое, а расход топлива уменьшается при этом на 4–5 %. Наличие промежуточного перегрева пара уменьшает также влажность пара в последних ступенях турбины, в силу чего уменьшается износ лопаток капельками воды и несколько повышается КПД ЦНД турбины.

Далее, в хвостовой части котла, расположены вспомогательные поверхности, предназначенные для использования тепла уходящих газов. В этой конвективной части котла находятся водяной экономайзер 8, где питательная вода подогревается перед поступлением в барабан, и воздухоподогреватель 9, служащий для подогрева воздуха перед подачей его в горелки и в схему пылеприготовления, что повышает КПД

ПК. Охлажденные уходящие газы с температурой 120–150 °С отсасываются дымососом в дымовую трубу.

Дальнейшее совершенствование водотрубных ПК сделало возможным создание ПК, состоящего сплошь из стальных труб малого диаметра, в которые с одного конца поступает вода под давлением, а с другого выходит пар заданных параметров, – так называемого прямоточного котла (рис. 3.9). Таким образом, это ПК, в котором полное испарение воды происходит за время однократного (прямоточного) прохождения воды через испарительную поверхность нагрева. В прямоточный ПК вода с помощью питательного насоса подается через экономайзер. В таком котле нет барабана и опускных труб.

Поверхность нагрева котла можно представить как ряд параллельных змеевиков, в которых вода по мере движения нагревается, превращается в пар и далее пар перегревается до нужной температуры. Эти змеевики располагаются и на сте-

102

нах топочной камеры, и в газоходах котла. Топочные устройства, вторичный пароперегреватель и воздухоподогреватель прямоточных котлов не отличаются от барабанных.

В барабанных котлах по мере выпаривания воды концентрация солей в остающейся котловой воде растет, и требуется все время небольшую долю этой котловой воды в количестве примерно 0,5 % выбрасывать из котла, чтобы не допустить нарастания концентрации солей выше определенного предела. Этот процесс называется продувкой котла. Для прямоточных котлов такой способ вывода накопленных солей неприменим ввиду отсутствия водяного объема, и поэтому нормы качества питательной воды для них значительно более жесткие.

Другим недостатком прямоточных ПК является увеличенный расход энергии на привод питательного насоса.

Рис. 3.9. Принципиальная схема прямоточного ПК: 1 – экраны нижней радиационной части; 2 – горелки; 3 – экраны верхней ради-

103

ационной части; 4 – ширмовый пароперегреватель; 5 – конвективный пароперегреватель; 6 – вторичный пароперегреватель; 7 – водяной экономайзер; 8 – подвод питательной воды; 9 – отвод пара к турбине; 10 – подвод пара от ЦВД для вторичного перегрева; 11 – отвод пара к ЦСД после вторичного перегрева; 12 – отвод

дымовых газов к воздухоподогревателю

Прямоточные ПК устанавливают, как правило, на конденсационных электростанциях, где питание котлов осуществляется обессоленной водой. Применение их на теплоэлектроцентралях связано с повышенными затратами на химическую очистку добавочной (подпиточной) воды. Наиболее эффективны прямоточные ПК для сверхкритических давлений (выше 22 МПа), где другие типы котлов неприменимы.

Вэнергетических блоках либо устанавливают один котел на турбину (моноблоки), либо два котла половинной производительности. К преимуществам дубль-блоков можно отнести возможность работы блока с половинной нагрузкой на турбине в случае повреждения одного из котлов. Однако наличие двух котлов в блоке существенно усложняет всю схему и управление блоком, что само по себе снижает надежность блока в целом. Кроме того, работа блока с половинной нагрузкой весьма неэкономична. Опыт ряда станций показал возможность работы моноблоков не менее надежно, чем дубль-блоков.

Вблочных установках с давлением пара до 130 кгс/см2 (13 МПа) применяются котлы как барабанного, так и прямоточного типа. В установках с давлением 240 кгс/см2 (24 МПа)

ивыше применяются только прямоточные котлы.

Теплофикационный котел – это котлоагрегат тепло-

электроцентрали (ТЭЦ), обеспечивающий одновременное снабжение паром теплофикационных турбин и производство пара или горячей воды для технологических, отопительных и других нужд. В отличие от котлов КЭС в теплофикационных котлах обычно используют в качестве питателя воды

104

возвращаемый загрязненный конденсат. Для таких условий работы наиболее пригодны барабанные котлоагрегаты со ступенчатым испарением. На большинстве ТЭЦ теплофикационные котлы имеют поперечные связи по пару и по воде. В РФ на ТЭЦ наиболее распространены барабанные котлы паропроизводительностью 420 т/ч (давление пара 14 МПа, температура 560 °С). С 1970 года на мощных ТЭЦ с преобладающими отопительными нагрузками при возврате почти всего конденсата в чистом виде применяют моноблоки с прямоточными котлами паропроизводительностью 545 т/ч (25 МПа, 545 °С).

К теплофикационным ПК можно отнести также пиковые водогрейные котлы, которые используют для дополнительного подогрева воды при повышении тепловой нагрузки сверх наибольшей, обеспечиваемой отборами турбин. При этом вода нагревается сначала паром в бойлерах до 110– 120 °С, а затем в котлах до 150–170 °С. В нашей стране эти котлы устанавливают обычно рядом с главным корпусом ТЭЦ. Применение сравнительно дешевых пиковых водогрейных теплофикационных котлов для снятия кратковременных пиков тепловых нагрузок позволяет резко увеличить число часов использования основного теплофикационного оборудования и повысить экономичность его эксплуатации.

Для теплоснабжения жилых массивов часто применяют водогрейные газомазутные котлы, работающие на газе. В качестве резервного топлива таких котлов применяют мазут, для подогрева которого применяют газомазутные барабанные паровые котлы.

3.1.4.2. Паровые турбины

Паровая турбина (ПТ) является тепловым двигателем,

вкотором потенциальная энергия пара превращается в кинетическую энергию паровой струи, а последняя преобразуется

вмеханическую энергию вращения ротора.

105

Создать ПТ пытались с давних времен. Известно описание примитивной ПТ, сделанное Героном Александрийским (I век до н. э.). Однако только в конце XIX века, когда термодинамика, машиностроение и металлургия достигли достаточного уровня, К.Г. Лаваль (Швеция) и Ч.А. Парсонс (Великобритания) независимо друг от друга в 1884–1889 годах создали промышленно пригодные ПТ.

Лаваль применил расширение пара в конических неподвижных соплах в один прием от начального до конечного давления и полученную струю (со сверхзвуковой скоростью истечения) направил на один ряд рабочих лопаток, насаженных на диск. ПТ, работающие по этому принципу, получили название активных ПТ. Невозможность получения большой агрегатной мощности и очень высокая частота вращения одноступенчатых ПТ Лаваля (до 30 000 об/мин у первых образцов) привели к тому, что они сохранили свое значение только для привода вспомогательных механизмов.

Парсонс создал многоступенчатую реактивную ПТ, в которой расширение пара осуществлялось в большом числе последовательно расположенных ступеней не только в каналах неподвижных (направляющих) лопаток, но и между подвижными (рабочими) лопатками. Реактивная ПТ Парсонса некоторое время применялась в основном на военных кораблях, но постепенно уступила место более компактным комбинированным активно-реактивным ПТ, у которых реактивная часть высокого давления заменена активным диском. В результате уменьшились потери на утечки пара через зазоры в лопаточном аппарате, турбина стала проще и экономичнее.

Активные ПТ электростанций развивались в направлении создания многоступенчатых конструкций, в которых расширение пара осуществлялось в ряде последовательно расположенных ступеней. Это позволило значительно увеличить единичную мощность ПТ, сохранив умеренную частоту

106

вращения, необходимую для непосредственного соединения вала ПТ с вращаемым ею механизмом, в частности, электрическим генератором.

Существует несколько вариантов конструкций паровых турбин, позволяющих классифицировать их по ряду признаков.

По направлению движения потока пара различают акси-

альные ПТ, у которых поток пара движется вдоль оси турбины, и радиальные ПТ, направление потока пара в которых перпендикулярно, а рабочие лопатки расположены параллельно оси вращения. В РФ строят только аксиальные ПТ.

По числу корпусов (цилиндров) ПТ подразделяют на однокорпусные, двухкорпусные и трехкорпусные (с цилиндрами высокого, среднего и низкого давлений). Многокорпусная конструкция позволяет использовать большие располагаемые перепады энтальпии, разместив большое число ступеней давления, применить высококачественные металлы в части высокого давления и раздвоение потока пара в части низкого давления. Вместе с тем такая ПТ получается более дорогой, тяжелой и сложной.

По числу валов различают одновальные ПТ, у которых валы всех корпусов находятся на одной оси, а также двухвальные или трехвальные, состоящие из двух или трех параллельно размещенных одновальных ПТ, связанных общностью теплового процесса, а у судовых ПТ также общей зубчатой передачей (редуктором).

Неподвижную часть ПТ (корпус) выполняют разъемной в горизонтальной плоскости для возможности монтажа ротора. В корпусе имеются выточки для установки диафрагм, разъем которых совпадает с плоскостью разъема корпуса. По периферии диафрагм размещены сопловые каналы, образованные криволинейными лопатками, залитыми в тело диафрагм или приваренными к нему. В местах прохода вала сквозь стенки корпуса установлены концевые уплотнения лабиринтового типа для предупреждения утечек пара наружу

107

(со стороны высокого давления) и засасывания воздуха

вкорпус (со стороны низкого). Лабиринтовые уплотнения устанавливают также в местах прохода ротора сквозь диафрагмы во избежание перетечек пара из ступени в ступень

вобход сопел. На переднем конце вала устанавливают предельный регулятор (регулятор безопасности), автоматически останавливающий ПТ при увеличении частоты вращения на 10–12 % сверх номинальной. Задний конец ротора снабжают валоповоротным устройством с электрическим приводом для медленного (4–6 об/мин) проворачивания ротора после останова ПТ, что необходимо для равномерного его остывания.

На рис. 3.10 схематически показано устройство одной из промежуточных ступеней современной паровой турбины ТЭС. Ступень состоит из диска с лопатками и диафрагмы. Диафрагма представляет собой вертикальную перегородку между двумя дисками, в которой по всей окружности против рабочих лопаток расположены неподвижные направляющие лопатки, образующие сопла для расширения пара. Диафрагмы выполняют из двух половин с горизонтальным разъемом, каждая из которых укреплена в соответствующей половине корпуса турбины.

Большое число ступеней заставляет выполнять турбину из нескольких цилиндров, размещая в каждом по 10–

12 ступеней. У турбин с про- Рис. 3.10. Устройство одной из

межуточным перегревом пара в первом цилиндре высокого давления (ЦВД) обычно располагают группу ступеней, преобразующих энер-

108

ступеней многоступенчатой турбины: 1 – вал; 2 – диск; 3 – рабочая лопатка; 4 – стенка цилиндра турбины; 5 – сопловая решетка; 6 – диафрагма; 7 – уп-

лотнение диафрагмы

гию пара от начальных параметров до давления, при котором пар поступает на промежуточный перегрев. После промежуточного перегрева пара в турбинах мощностью 200 и 300 МВт пар поступает еще в два цилиндра – ЦСД и ЦНД.

Часть пара, работающего в турбине, отбирается из промежуточных ступеней и направляется в подогреватели для подогрева питательной воды. У современных турбин с промперегревом делается обычно от 7 до 9 промежуточных отборов, и через них отбирается до 30 % пара, поступившего в турбину. Ступенчатый подогрев воды паром, частично отдавшим свою энергию в турбине, называется регенерацией (восстановлением, возвратом) тепла и дает значительный экономический эффект. Благодаря наличию регенерации требуется затрачивать меньше топлива в котле на нагрев воды, так как она уже приходит подогретой. Кроме того, в конденсатор поступает пара на 30 % меньше, чем вошло в турбину, в силу чего количество тепла, отдаваемого в процессе конденсации отработавшего пара охлаждающей воде, при наличии регенеративных отборов также уменьшается.

Паровые турбины ТЭС комплектуются электрическими генераторами: каждой турбине соответствует свой генератор. Мощность турбины КЭС выбирается в соответствии с мощностью блоков, а число их устанавливается по заданной мощности электростанции.

По своему назначению ПТ бывают трех типов:

1)конденсационные (когда давление пара на выходе турбины ниже атмосферного), применяются на КЭС;

2)с противодавлением (когда давление пара на выходе турбины выше атмосферного), применяются на ТЭЦ;

3)специального назначения.

Чисто конденсационные ПТ служат для превращения максимально возможной части теплоты пара в механическую работу. Эти ПТ работают с выпуском отработавшего пара

109

в конденсатор, где поддерживается вакуум. Применение конденсатора на выходе турбины позволяет увеличить электрическую эффективность, но практически сводит к нулю последующее использование отходящего тепла.

Чисто конденсационные ПТ могут быть стационарными или транспортными.

Стационарные ПТ в соединении с генераторами переменного электрического тока (турбогенераторы) основное оборудование КЭС. Чем больше мощность турбогенератора, тем он экономичнее и тем ниже стоимость 1 кВт установленной мощности. Поэтому мощность ПТ постепенно наращивалась, и к 1974 году достигла 1200 МВт при давлении свежего пара до 35 МПа (1 Па = 1 Н/м2 = 10–5 кгс/см2) и температуре до 650 °С. Принятая в РФ частота электрического тока 50 Гц требует, чтобы частота вращения ПТ, непосредственно соединенной с двухполюсным генератором, равнялась 3000 об/мин. Все стационарные ПТ имеют нерегулируемые отборы пара из 2–5 ступеней давления для регенеративного подогрева питательной воды.

В зависимости от назначения стационарные ПТ электростанций могут быть базовыми, несущими постоянную основную нагрузку; пиковыми, кратковременно работающими для покрытия пиков нагрузки; турбинами собственных нужд, обеспечивающими потребность электростанции в электроэнергии. От базовых ПТ требуется высокая экономичность на нагрузках, близких к полной (около 80 %). От пиковых ПТ требуется возможность быстрого пуска и включения в работу, от ПТ собственных нужд – особая надежность в работе.

Транспортные ПТ используются в качестве главных и вспомогательных двигателей на судах. Неоднократно делались попытки применить ПТ на локомотивах, однако паротурбовозы распространения не получили. Для соединения быстроходных ПТ с гребными винтами, требующими невысокой (от 100 до 500 об/мин) частоты вращения, применяют

110