Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Общая энергетика

..pdf
Скачиваний:
15
Добавлен:
15.11.2022
Размер:
4.01 Mб
Скачать

• тяжеловодные (несколько меньших размеров по сравнению с графитовыми).

По признакам 3 и 4 принципиально возможны многочисленные типы ядерных реакторов. Однако практически целесообразных конструкций не так много. В табл. 3.1 показаны целесообразные (+) и нецелесообразные (–) сочетания замедлителя и теплоносителя.

 

 

 

 

Таблица 3.1

 

 

 

 

 

Замедлитель

 

Теплоноситель

 

Н2О

Газ

D2О

Жидкий

 

металл

 

 

 

 

Н2О

+

Графит

+

+

D2О

+

+

+

Отсутствует

+

+

Наиболее часто на АЭС применяют 4 типа реакторов на тепловых нейтронах: водо-водяные с обычной водой в качестве замедлителя и теплоносителя; графитоводяные с водяным теплоносителем и графитовым замедлителем; графитогазовые с газовым теплоносителем и графитовым замедлителем; тяжеловодные с водяным теплоносителем и тяжелой водой в качестве замедлителя. В России строят главным образом графитоводяные и водо-водяные реакторы. На АЭС США наибольшее распространение получили водо-водяные реакторы. Графитогазовые реакторы применяются в Англии. В атомной энергетике Канады преобладают АЭС с тяжеловодными реакторами.

В реакторах на быстрых нейтронах в качестве теплоносителя применяется жидкий натрий, а замедлитель отсутствует.

5. По структуре активной зоны (взаимному размещению горючего и замедлителя):

141

гетерогенные (все работающие в настоящее время реакторы);

гомогенные (пока находятся в стадии исследования отдельных опытных образцов).

Вгомогенном реакторе активная зона представляет собой однородную массу топлива, замедлителя и теплоносителя в виде раствора, смеси или расплава.

Гетерогенным называется реактор, в котором топливо

ввиде блоков или тепловыделяющих сборок размещено в замедлителе, образуя в нем правильную геометрическую решетку.

6. По конструктивному исполнению:

корпусные реакторы, в которых топливо и замедлитель расположены внутри корпуса, несущего полное давление теплоносителя, который прокачивается через всю активную зону;

канальные реакторы, в которых топливо, охлаждаемое теплоносителем, устанавливается в специальных трубахканалах, пронизывающих замедлитель, заключенный в тонкостенный кожух. Теплоноситель под давлением прокачивается независимо через каждый рабочий канал. Такие реакто-

ры применяются в России (Сибирская, Белоярская АЭС и др.).

При двухконтурной схеме вода является теплоносителем и замедлителем нейтронов. Реакторы, созданные для работы в таких условиях, принято называть водо-водяными энергетическими реакторами (ВВЭР). ВВЭР подразделяются на два типа: ВВРД – с водой под давлением (без кипения); ВВРК – с кипящей водой. По этой схеме работают Ровенская, Кольская, третий энергоблок Нововоронежской АЭС, а также Армянская АЭС, ряд АЭС в Германии, США, Болгарии и др.

Реакторы канального типа, в которых теплоносителем является вода, а замедлителем – графит, применяются на крупных блоках с турбинами насыщенного пара. Эти реакто-

142

ры принято называть реакторами большой мощности ка-

нального типа (РБМК). АЭС с реакторами РБМК работают по одноконтурной схеме.

Основные технические характеристики блоков АЭС с реакторами типа ВВЭР и РБМК приведены в табл. 3.2.

 

 

 

Таблица 3.2

 

 

 

 

Показатель

ВВЭР-440

ВВЭР-1000

РБМК-1000

Мощность блока, МВт

440

1000

 

1000

Мощность турбогенератора,

220

500

 

500

МВт

 

 

 

 

Число турбин в блоке, шт.

2

2

 

2

Давление пара перед турби-

4,32

5,88

 

6,46

ной, МПа

 

 

 

 

КПД (нетто), %

29,7

31,7

 

31,3

Реакторы с графитовым замедлителем достаточно широко применяются на АЭС благодаря возможности использования в качестве топлива природного слабообогащенного металлического урана или его двуокиси, получения большего коэффициента воспроизводства, чем у реакторов типа ВВЭР, применения в сочетании с графитом высокотемпературных газовых теплоносителей, а также создания систем перегрузки без остановки реактора.

Реакторы с графитовым замедлителем могут быть корпусными и канальными. Для корпусных графитовых реакторов в качестве теплоносителя используются углекислый газ, гелий и реже другие газы (газографитовые реакторы – ГГР, применяемые, в частности, в Великобритании), а для канальных – обычная вода (водографитовые реакторы – ВГР, применяемые, в частности, в России).

Особенность ядерных реакторов состоит в том, что 94 % энергии деления превращается в теплоту мгновенно, т.е. за время, в течение которого мощность реактора или плотность

143

материалов в нем не успевает заметно измениться. Поэтому при изменении мощности реактора тепловыделение следует без запаздывания за процессом деления топлива.

Мощность ядерного реактора пропорциональна плотности потока нейтронов в нем, поэтому теоретически достижима любая мощность. Практически же предельная мощность определяется скоростью отвода теплоты, выделяемой в реакторе. Удельный теплосъем в современных энергетических реакторах составляет 102–103 МВт/м3. От реактора теплота отводится циркулирующим через него теплоносителем.

Характерной особенностью реактора является остаточное тепловыделение после прекращения реакции деления, что требует отвода теплоты в течение длительного времени после остановки реактора. Хотя мощность остаточного тепловыделения значительно меньше номинальной, циркуляция теплоносителя через реактор должна обеспечиваться очень надежно, так как остаточное тепловыделение регулировать нельзя. Удаление теплоносителя из работавшего некоторое время реактора категорически запрещено во избежание перегрева и повреждения тепловыделяющих элементов.

3.2.2.2. Реакторы на тепловых и быстрых нейтронах

Устройство реактора на тепловых нейтронах рассмотрим на примере РБМК-1000 – реактора большой мощности канального (рис. 3.19). Он относится к водографитовым реакторам (ВГР) и представляет собой набор вертикальных каналов 2 из циркония, вставленных в отверстия блочной графитовой кладки 3, являющейся замедлителем и отражателем (на рисунке условно показаны только два канала из всех) и помещенной в корпус 4, заполненный инертным газом под давлением, близким к атмосферному.

144

Рис. 3.19. Конструктивная схема реактора РБМК-1000

Нагрузка от собственного веса активной зоны воспринимается нижней опорной металлоконструкцией коробчатого сечения, заполненной серпентинитом 1. Верхняя металлоконструкция, аналогичная нижней, опирается на бак с водой, служащий для радиационно-тепловой и биологической защиты. Между перекрытием реакторного отделения и верхней металлоконструкцией расположена система разводки труб теплоносителя от общих и групповых коллекторов к головкам каналов. Каналы проходят через пространство для разводки теплоносителя 5 и заканчиваются перегрузочными головками 6. Перегрузка осуществляется с помощью специальной машины, установленной на перекрытии реакторного отделения 7. Подреакторное пространство занято помещением приводов системы управления и защиты (СУЗ). СУЗ предназначена для пуска реактора, выхода на проектную мощность, изменения и поддержания заданной мощности, остановки реактора.

145

Вес реактора передается на бетон через сварные металлоконструкции, которые одновременно используются для биологической защиты.

В реакторах ВГР Белоярской АЭС перегретый пар образуется непосредственно в рабочих каналах активной зоны. Каналы бывают двух типов: испарительные и пароперегревательные. В испарительных каналах вода преобразуется в пароводяную смесь, которая подается в сепаратор. Пар, отделенный от воды в сепараторе, поступает в пароперегревательные каналы и выводится из реактора при температуре 480 °С и давлении 9 МПа, т.е. происходит ядерный перегрев пара. При прохождении через активную зону пар активируется, поэтому конденсаторы турбин, трубопроводы острого пара и другое вспомогательное оборудование на подобных АЭС должны быть окружены биологической защитой.

Дальнейшее развитие реакторов этого типа осуществлялось путем упрощения конструкции каналов (одноходовое движение теплоносителя), замены нержавеющей стали, обладающей значительным сечением захвата нейтронов, цирконием (улучшение нейтронного баланса), использования хорошо освоенного двуокисного топлива в форме пучков в циркониевой оболочке, увеличения единичной мощности, а также обеспечения почти непрерывной перегрузки топлива. Реакторы РБМК установлены на многих атомных электростанциях России (Ленинградской, Курской, Смоленской и др.).

Будущее атомной энергетики принадлежит реакторам на быстрых нейтронах (БН). В качестве теплоносите-

ля в реакторах на быстрых нейтронах используют газы или жидкие металлы, в основном натрий. Такие реакторы применяют в трехконтурных тепловых схемах АЭС. Основные параметры двух отечественных реакторов на быстрых нейтронах приведены в табл. 3.3, схема одного из них – на рис. 3.20.

146

 

 

Таблица 3.3

 

 

 

 

Параметр

БН-350

 

БН-600

Мощность, МВт:

 

 

 

тепловая

1000

 

1470

электрическая

150

 

600

КПД (брутто), %

35

 

43

Число контуров

3

 

3

Теплоноситель

Na

 

Na

Число петель охлаждения

6

 

3

Мощность турбоагрегата, МВт

50

 

200

Параметры пара перед турбиной:

 

 

 

температура, °С

440

 

505

давление, МПа

5

 

14

Рис. 3.20. Реактор на быстрых нейтронах БН-600: 1 – несущая конструкция; 2 – бак реактора; 3 – насос; 4 – электродвигатель насоса; 5

– поворотная пробка; 6 – верхняя неподвижная защита; 7 – теплообменник; 8 – центральная сборка СУЗ; 9 – загрузочное устройство

147

Для энергетического реактора БН-600 третьего энергоблока Белоярской АЭС принята интегральная (баковая) компоновка радиоактивного технологического оборудования: активная зона, насосы и промежуточные теплообменники расположены в одном герметичном баке (см. рис. 3.20). Теплоноситель на выходе из активной зоны имеет высокую температуру, что увеличивает КПД АЭС и позволяет использовать пар параметров, принятых на современных тепловых электростанциях.

3.2.3. Ядерное топливо

Топливом для АЭС является ядерное топливо, содержащееся в ТВЭЛах, представляющих собой тепловыделяющие сборки (ТВС). Для современных мощных реакторов загрузка составляет от 40 до 190 т. Особенность процесса в том, что масса выгружаемых после отработки определенного срока ТВС такая же, как и масса свежезагружаемых. Происходит лишь частичная замена ядерного горючего на продукты деления. Выгружаемое из реактора топливо имеет все еще значительную ценность. Поэтому для АЭС расход ядерного горючего не является характерной величиной, а степень использования внутриядерной энергии характеризуется глубиной выгорания.

Кядерному топливу относят делящиеся изотопы тя-

желых элементов. Делящимися изотопами называются нуклиды, которые делятся при взаимодействии с низкоэнергетическими нейтронами.

Ктаким изотопам относятся U235, U233, Рu239 и Рu241, сре-

ди которых только первый существует в природе. Период полураспада остальных изотопов сравнительно мал, и за время, прошедшее с момента образования во Вселенной химических элементов в процессе ядерного синтеза, они успели полностью распасться.

148

U233 образуется при захвате нейтронов сырьевым изотопом Th232, единственным стабильным изотопом тория. Торий не имеет делящихся нуклидов и является только воспроизводящим материалом.

Рu239 образуется аналогично из сырьевого изотопа U238. Более тяжелый делящийся изотоп Рu241 образуется в результате двух последовательных захватов нейтронов ядром Рu239.

Хотя при начальном образовании вещества во Вселенной относительные количества изотопов U235 и U238 в естественном уране должны быть примерно одинаковыми, меньший период полураспада первого из них (0,71·109 лет по сравнению с 4,5·109 лет) привел к тому, что к настоящему времени содержание U235 в естественном уране очень сильно снизилось.

Вопрос об использовании плутония для сокращения потребления естественного урана должен решаться с учетом того обстоятельства, что стоимость его извлечения из облученного топлива достаточно высока. Это связано как с высоким уровнем радиоактивности отработанного топлива, так и с высокой токсичностью самого плутония.

Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органического топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворения быстро растущих потребностей в топливе. Кроме того, необходимо учитывать все увеличивающийся объем потребления угля и нефти для технологических целей мировой химической промышленности, которая становится серьезным конкурентом тепловых электростанций. Несмотря на открытие новых месторождений органического топлива и совершенствование способов его добычи, в мире наблюдается тенденция к относительному увеличению его стоимости. Это создает наиболее тяжелые условия для стран, имеющих ограниченные запасы топлива

149

органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, которая уже занимает заметное место в энергетическом балансе ряда промышленных стран мира.

3.2.4.Тепловые схемы АЭС

Влюбой АЭС различают теплоноситель и рабочее те-

ло. Рабочее тело – это среда, совершающая работу, преобразуя тепловую энергию в механическую. Рабочим телом обычно является водяной пар. Контур рабочего тела всегда замкнут и добавочная вода в него поступает лишь в небольших количествах.

Назначение теплоносителя на АЭС – отводить тепло, выделяющееся на реакторе. Для предотвращения отложений на тепловыделяющих элементах необходима высокая чистота теплоносителя. Поэтому для него также необходим замкнутый контур, тем более что теплоноситель реактора всегда радиоактивен.

АЭС называется одноконтурной, если контуры теплоносителя и рабочего тела не разделены. Преимущества этой схемы: простота и большая экономичность по сравнению

сдвух- и трехконтурными схемами. Недостаток – все оборудование работает в радиационно-активных условиях.

АЭС называется двухконтурной, если контуры теплоносителя и рабочее тело разделены. Контур теплоносителя – первый контур, контур рабочего тела – второй. Преимущества: оборудование не работает в радиационно-активных условиях. Недостаток: более низкая экономичность и более высокая сложность по сравнению с одноконтурной схемой.

АЭС называется трехконтурной, если помимо раздельных контуров теплоносителя и рабочего тела присутствует также и промежуточный контур.

Промежуточный контур призван предотвратить опасность выброса радиоактивных веществ в случае, если давле-

150