
- •Биохимия теория
- •1. Аминокислоты. Классификация (по структуре, по характеру r-групп, заменимые и незаменимые).
- •2. Физико-химические свойства ак.
- •3. Первичная структура белка. Характеристика пептидной связи.
- •4. Вторичная структура белка. Альфа- спираль и бета – складчатый слой.
- •5. Третичная структура белка и силы ее стабилизирующие.
- •6. Четвертичная структура белка. Понятия о денатурации и деструкции.
- •7. Кооперативный эффект связывания кислорода гемоглобином..
- •8. Отличия ферментов от неорганических катализаторов.
- •9. Классификация ферментов с примерами реакций на каждый класс.
- •10. Влияние температуры, pH и концентрации фермента на скорость ферментативной реакции.
- •11. Влияние концентрации субстрата на скорость ферментативной реакции. Вывод уравнения Михаэлиса-Ментен.
- •12. Ингибирование ферментов. Конкурентное ингибирование.
- •13. Ингибирование ферментов. Неконкурентное ингибирование.
- •14. Аллостерические ферменты.
- •15. Активный центр фермента и его свойства.
- •16. Кофакторы и коферменты. Классификация.
- •17. Молекулярные механизмы ферментативного катализа.
- •18. Способы определения активности фермента. Единицы измерения. Понятие об удельной и молярной активности.
- •20. Изоферменты.
- •21. Моносахариды. Представители и свойства. Функции углеводов.
- •22. Производные моносахаридов.
- •23. Дисахариды. Восстанавливающие и невосстанавливающие сахара.
- •24. Гомо- и гетерополисахариды.
- •25. Переваривание углеводов в жкт.
- •26. Липиды. Классификация липидов и их функции.
- •27. Жирные кислоты. Их роль в организме.
- •28. Эйказаноиды и простагландины.
- •29. Фосфолипиды (Фосфатидилэтаноламин, фосфатидилхолин, фосфатидилинозитол).
- •30. Сфинголипиды. Церамиды. Ганглиозиды
- •31. Неомыляемые липиды. Холестерин и его свойства.
- •32. Распад липидов в жкт. Специфичность фосфолипаз.
- •33. Химический состав нуклеиновых кислот. Правила Чаргаффа.
- •34. Структурная организация олиго- и полинуклеотидов. Характеристика первичной структуры днк.
- •35. Вторичная структура днк. Формы двойной спирали.
- •36. Третичная структкура днк.
- •37. Структура и свойства рибосомальных, матричных и транспортных рнк
- •38. Биосинтез белка. Стадии активации и инициации.
- •39. Биосинтез белка. Стадии элонгации и терминации.
- •40. Ингибиторы биосинтеза белка. Механизм действия дифтерийного токсина.
- •41. Витамины, классификация. Антивитамины. Несовместимость витаминов. Особенности водорастворимых витаминов.
- •42. Жирорастворимые витамины (a, d, e, k).
- •43. Водорастворимые витамины группы b (b1, b2, b3, b6, b12).
- •44. Фолиевая кислота и витамин с.
- •45. Пути превращения углеводов. Реакции гликолиза и его регуляция.
- •49. Работа цикла трикарбоновых кислот(цтк). Анаплеротические реакции цтк.
- •50. Методы выделения белковых молекул.
- •51. Окисление жирных кислот с четным числом углеродных атомов.
- •52. Окисление жирных кислот с нечетным числом углеродных атомов.
- •53. Биосинтез жирных кислот.
- •57. Пути превращения аминокислот в организме человека. Глюкогенные и кетогенные аминокислоты.
- •58. Синтез кетоновых тел, их роль для организма человека.
- •59. Цикл мочевины.
- •60.Обмен пуринов (распад и синтез) у человека.
- •61. Обмен пиримидинов (распад и синтез) у человека
- •62. Гормоны гипоталамуса и гипофиза.
- •63. Гормоны надпочечников (коркового и мозгового слоя)
- •64. Гормоны щитовидной железы.
- •65. Гормоны поджелудочной железы.
- •66. Половые гормоны.
- •67.Глюкозо-аланиновый и глюкозо-лактатный путь, роль в организме человека.
- •68.Дыхательная цепь митохондрий. Характеристика переносчиков.
- •69.Хемиоосмотическая модель п.Митчелла (основные постулаты и доказательства).
- •70. Ингибиторы и разобщители дыхательной цепи митохондрий.
4. Вторичная структура белка. Альфа- спираль и бета – складчатый слой.
Ответ. Вторичная структура белка — локальная конформация, обусловленная вращением отдельных участков полипептидной цепи вокруг одинарных ковалентных связей. Основные связи, которые стабилизируют вторичную структуру, — водородные. Виды вторичной структуры: α-спираль (правозакрученная); β-структура: β-слой, β-поворот. α-спирали — плотные витки вокруг длинной оси молекулы. Один виток составляет 3,6 аминокислотных остатка, шаг спирали равен 0,54 нм (на один аминокислотный остаток приходится 0,15 нм). Спираль стабилизирована водородными связями между H и O пептидных групп, отстоящих друг от друга на 4 звена. Хотя α-спираль может быть как левозакрученной, так и правозакрученной, в белках преобладает правозакрученная. Спираль нарушают электростатические взаимодействия глутаминовой кислоты, лизина, аргинина. Расположенные близко друг к другу остатки аспарагина, серина, треонина и лейцина могут стерически мешать образованию спирали, остатки пролина вызывают изгиб цепи и тоже нарушают α-спирали; β-листы (складчатые слои) — несколько зигзагообразных полипептидных цепей, в которых водородные связи образуются между относительно удалёнными друг от друга (0,34 нм на аминокислотный остаток) аминокислотами в первичной структуре или разными цепями белка (а не близко расположенными, как в α-спирали). Эти цепи обычно направлены N-концами в противоположные стороны (антипараллельная ориентация) или в одну сторону (параллельная β-структура). Также возможно существование смешанной β-структуры, состоящей из параллельной и антипараллельной β-структур. Для образования β-листов важны небольшие размеры боковых групп аминокислот, преобладают обычно глицин и аланин.
5. Третичная структура белка и силы ее стабилизирующие.
Ответ. Третичная структура — пространственное строение полипептидной цепи. Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которых гидрофобные взаимодействия играют важнейшую роль. В стабилизации третичной структуры принимают участие: ковалентные связи (между двумя остатками цистеина — дисульфидные мостики); ионные связи между противоположно заряженными боковыми группами аминокислотных остатков; водородные связи; гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула сворачивается так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы. Исследования принципов укладки белков показали, что между уровнем вторичной структуры и атомарной пространственной структурой удобно выделять ещё один уровень — мотив укладки (архитектура, структурный мотив). Мотив укладки определяется взаимным расположением элементов вторичной структуры (α-спиралей и β-тяжей) в пределах белкового домена — компактной глобулы, которая может существовать или сама по себе или входить в состав более крупного белка наряду с другими доменами. Известно, что мотивы укладки являются довольно консервативными и встречаются в белках, которые не имеют ни функциональных, ни эволюционных связей. Определение мотивов укладки лежит в основе физической, или рациональной классификации белков (такой как CATH или SCOP). Для определения пространственной структуры белка применяют методы рентгеноструктурного анализа, ядерного магнитного резонанса и некоторые виды микроскопии.