
- •Биохимия теория
- •1. Аминокислоты. Классификация (по структуре, по характеру r-групп, заменимые и незаменимые).
- •2. Физико-химические свойства ак.
- •3. Первичная структура белка. Характеристика пептидной связи.
- •4. Вторичная структура белка. Альфа- спираль и бета – складчатый слой.
- •5. Третичная структура белка и силы ее стабилизирующие.
- •6. Четвертичная структура белка. Понятия о денатурации и деструкции.
- •7. Кооперативный эффект связывания кислорода гемоглобином..
- •8. Отличия ферментов от неорганических катализаторов.
- •9. Классификация ферментов с примерами реакций на каждый класс.
- •10. Влияние температуры, pH и концентрации фермента на скорость ферментативной реакции.
- •11. Влияние концентрации субстрата на скорость ферментативной реакции. Вывод уравнения Михаэлиса-Ментен.
- •12. Ингибирование ферментов. Конкурентное ингибирование.
- •13. Ингибирование ферментов. Неконкурентное ингибирование.
- •14. Аллостерические ферменты.
- •15. Активный центр фермента и его свойства.
- •16. Кофакторы и коферменты. Классификация.
- •17. Молекулярные механизмы ферментативного катализа.
- •18. Способы определения активности фермента. Единицы измерения. Понятие об удельной и молярной активности.
- •20. Изоферменты.
- •21. Моносахариды. Представители и свойства. Функции углеводов.
- •22. Производные моносахаридов.
- •23. Дисахариды. Восстанавливающие и невосстанавливающие сахара.
- •24. Гомо- и гетерополисахариды.
- •25. Переваривание углеводов в жкт.
- •26. Липиды. Классификация липидов и их функции.
- •27. Жирные кислоты. Их роль в организме.
- •28. Эйказаноиды и простагландины.
- •29. Фосфолипиды (Фосфатидилэтаноламин, фосфатидилхолин, фосфатидилинозитол).
- •30. Сфинголипиды. Церамиды. Ганглиозиды
- •31. Неомыляемые липиды. Холестерин и его свойства.
- •32. Распад липидов в жкт. Специфичность фосфолипаз.
- •33. Химический состав нуклеиновых кислот. Правила Чаргаффа.
- •34. Структурная организация олиго- и полинуклеотидов. Характеристика первичной структуры днк.
- •35. Вторичная структура днк. Формы двойной спирали.
- •36. Третичная структкура днк.
- •37. Структура и свойства рибосомальных, матричных и транспортных рнк
- •38. Биосинтез белка. Стадии активации и инициации.
- •39. Биосинтез белка. Стадии элонгации и терминации.
- •40. Ингибиторы биосинтеза белка. Механизм действия дифтерийного токсина.
- •41. Витамины, классификация. Антивитамины. Несовместимость витаминов. Особенности водорастворимых витаминов.
- •42. Жирорастворимые витамины (a, d, e, k).
- •43. Водорастворимые витамины группы b (b1, b2, b3, b6, b12).
- •44. Фолиевая кислота и витамин с.
- •45. Пути превращения углеводов. Реакции гликолиза и его регуляция.
- •49. Работа цикла трикарбоновых кислот(цтк). Анаплеротические реакции цтк.
- •50. Методы выделения белковых молекул.
- •51. Окисление жирных кислот с четным числом углеродных атомов.
- •52. Окисление жирных кислот с нечетным числом углеродных атомов.
- •53. Биосинтез жирных кислот.
- •57. Пути превращения аминокислот в организме человека. Глюкогенные и кетогенные аминокислоты.
- •58. Синтез кетоновых тел, их роль для организма человека.
- •59. Цикл мочевины.
- •60.Обмен пуринов (распад и синтез) у человека.
- •61. Обмен пиримидинов (распад и синтез) у человека
- •62. Гормоны гипоталамуса и гипофиза.
- •63. Гормоны надпочечников (коркового и мозгового слоя)
- •64. Гормоны щитовидной железы.
- •65. Гормоны поджелудочной железы.
- •66. Половые гормоны.
- •67.Глюкозо-аланиновый и глюкозо-лактатный путь, роль в организме человека.
- •68.Дыхательная цепь митохондрий. Характеристика переносчиков.
- •69.Хемиоосмотическая модель п.Митчелла (основные постулаты и доказательства).
- •70. Ингибиторы и разобщители дыхательной цепи митохондрий.
3. Первичная структура белка. Характеристика пептидной связи.
Ответ. Первичная структура — это конфигурация полипептидной цепи, которая формируется в результате образования пептидной связи между остатками АК. Постулаты (принципы формирования пептидной связи), сформулированные Л. Поллингом и Р. Кори: атомы, образующие пептидную связь, копланарны (расположены в одной плоскости); вращение атомов или групп атомов вокруг пептидной связи невозможно; принцип эквивалентности вклада АК-остатков в образование пептидной связи и, тем самым, в образование полипептидной цепи (исключение пролин); принцип максимума водородных связей. Первичную структуру белка стабилизируют (поддерживают): пептидные связи (между АК-остатками); дисульфидные связи (между свободными –SH-группами цистеина). Первичная структура белка генетически детерминирована и несет информацию о его пространственной структуре. Пептидная связь имеет характеристику частично двойной связи, поэтому она короче, чем остальные связи пептидного остова, и вследствие этого мало подвижна. Электронное строение пептидной связи определяет плоскую жёсткую структуру пептидной группы. Плоскости пептидных групп расположены под углом друг к другу. Связь между α-углеродным атомом и α-аминогруппой или α-карбоксильной группой способна к свободным вращениям (хотя ограничена размером и характером радикалов), что позволяет полипептидной цепи принимать различные конфигурации. Пептидные связи обычно расположены в транс-конфигурации, т.е. α-углеродные атомы располагаются по разные стороны от пептидной связи. В результате боковые радикалы аминокислот находятся на наиболее удалённом расстоянии друг от друга в пространстве. Пептидные связи очень прочны и самопроизвольно не разрываются при нормальных условиях, существующих в клетках (нейтральная среда, температура тела). В лабораторных условиях гидролиз пептидных связей белков проводят в запаянной ампуле с концентрированной (6 моль/л) соляной кислотой, при температуре более 105 °С, причём полный гидролиз белка до свободных аминокислот проходит примерно за сутки. В живых организмах пептидные связи в белках разрываются с помощью специальных протеолитических ферментов (от англ, protein - белок, lysis - разрушение), называемых также протеазами, или пептидгидролазами. Для обнаружения в растворе белков и пептидов, а также для их количественного определения используют биуретовую реакцию (положительный результат для веществ, содержащих в своём составе не менее двух пептидных связей). Пептидами называются соединения, образованные из аминокислот с помощью пептидных связей. Условно считают, что пептиды содержат менее 50 АК, а более длинные полипептиды уже относят к белкам. В природе существует два вида пептидов, один из которых синтезируется и выполняет физиологическую роль в процессе жизнидеятельности организма, другой образуется за счет химического или ферментативного гидролиза белков в организме или вне его. Пептиды, образующиеся в процессе гидролиза вне организма (in vitro), широко используются для анализа аминокислотной последовательности белков. Ферментативное образование пептидов происходит в желудочно-кишечном тракте человека в процессе переваривания белков пищи. Оно начинается в желудке под действием пепсина, гастриксина и заканчивается в желудке под действием пепсина, гастриксина и заканчивается в кишечнике при участии трипсина, химотрипсина, амино- и карбоксипептидаз. Распад коротких пептидов завершается ди- и трипептидами с образованием свободных аминокислот, которые расходуются на синтез белков и других активных соединений. Пептиды часто являются гормонами (соматостатин, окситоцин, инсулин, гастрин). Пептиды – антибиотики (пенициллин, грамицидин).