
- •Биохимия теория
- •1. Аминокислоты. Классификация (по структуре, по характеру r-групп, заменимые и незаменимые).
- •2. Физико-химические свойства ак.
- •3. Первичная структура белка. Характеристика пептидной связи.
- •4. Вторичная структура белка. Альфа- спираль и бета – складчатый слой.
- •5. Третичная структура белка и силы ее стабилизирующие.
- •6. Четвертичная структура белка. Понятия о денатурации и деструкции.
- •7. Кооперативный эффект связывания кислорода гемоглобином..
- •8. Отличия ферментов от неорганических катализаторов.
- •9. Классификация ферментов с примерами реакций на каждый класс.
- •10. Влияние температуры, pH и концентрации фермента на скорость ферментативной реакции.
- •11. Влияние концентрации субстрата на скорость ферментативной реакции. Вывод уравнения Михаэлиса-Ментен.
- •12. Ингибирование ферментов. Конкурентное ингибирование.
- •13. Ингибирование ферментов. Неконкурентное ингибирование.
- •14. Аллостерические ферменты.
- •15. Активный центр фермента и его свойства.
- •16. Кофакторы и коферменты. Классификация.
- •17. Молекулярные механизмы ферментативного катализа.
- •18. Способы определения активности фермента. Единицы измерения. Понятие об удельной и молярной активности.
- •20. Изоферменты.
- •21. Моносахариды. Представители и свойства. Функции углеводов.
- •22. Производные моносахаридов.
- •23. Дисахариды. Восстанавливающие и невосстанавливающие сахара.
- •24. Гомо- и гетерополисахариды.
- •25. Переваривание углеводов в жкт.
- •26. Липиды. Классификация липидов и их функции.
- •27. Жирные кислоты. Их роль в организме.
- •28. Эйказаноиды и простагландины.
- •29. Фосфолипиды (Фосфатидилэтаноламин, фосфатидилхолин, фосфатидилинозитол).
- •30. Сфинголипиды. Церамиды. Ганглиозиды
- •31. Неомыляемые липиды. Холестерин и его свойства.
- •32. Распад липидов в жкт. Специфичность фосфолипаз.
- •33. Химический состав нуклеиновых кислот. Правила Чаргаффа.
- •34. Структурная организация олиго- и полинуклеотидов. Характеристика первичной структуры днк.
- •35. Вторичная структура днк. Формы двойной спирали.
- •36. Третичная структкура днк.
- •37. Структура и свойства рибосомальных, матричных и транспортных рнк
- •38. Биосинтез белка. Стадии активации и инициации.
- •39. Биосинтез белка. Стадии элонгации и терминации.
- •40. Ингибиторы биосинтеза белка. Механизм действия дифтерийного токсина.
- •41. Витамины, классификация. Антивитамины. Несовместимость витаминов. Особенности водорастворимых витаминов.
- •42. Жирорастворимые витамины (a, d, e, k).
- •43. Водорастворимые витамины группы b (b1, b2, b3, b6, b12).
- •44. Фолиевая кислота и витамин с.
- •45. Пути превращения углеводов. Реакции гликолиза и его регуляция.
- •49. Работа цикла трикарбоновых кислот(цтк). Анаплеротические реакции цтк.
- •50. Методы выделения белковых молекул.
- •51. Окисление жирных кислот с четным числом углеродных атомов.
- •52. Окисление жирных кислот с нечетным числом углеродных атомов.
- •53. Биосинтез жирных кислот.
- •57. Пути превращения аминокислот в организме человека. Глюкогенные и кетогенные аминокислоты.
- •58. Синтез кетоновых тел, их роль для организма человека.
- •59. Цикл мочевины.
- •60.Обмен пуринов (распад и синтез) у человека.
- •61. Обмен пиримидинов (распад и синтез) у человека
- •62. Гормоны гипоталамуса и гипофиза.
- •63. Гормоны надпочечников (коркового и мозгового слоя)
- •64. Гормоны щитовидной железы.
- •65. Гормоны поджелудочной железы.
- •66. Половые гормоны.
- •67.Глюкозо-аланиновый и глюкозо-лактатный путь, роль в организме человека.
- •68.Дыхательная цепь митохондрий. Характеристика переносчиков.
- •69.Хемиоосмотическая модель п.Митчелла (основные постулаты и доказательства).
- •70. Ингибиторы и разобщители дыхательной цепи митохондрий.
16. Кофакторы и коферменты. Классификация.
Ответ. Кофактор — небольшое небелковое (и не производное от аминокислот) соединение (чаще всего ион металла), которое присоединяется к функциональному участку белка и участвует в его биологической деятельности. Такие белки обычно являются ферментами, поэтому кофакторы называют «молекулами-помощниками», которые участвуют в биохимических превращениях. Кофакторы классифицируются на неорганические ионы и комплексные органические молекулы, называемые коферментами. Последние обычно являются производными от витаминов. Кофактор, который прочно связан с белком (например, ковалентно), называют простетической группой. Неактивный фермент без кофактора называют апоферментом, а фермент вкупе с кофактором — холоферментом. Только в комплексе с кофактором фермент приобретает свои активные свойства и способен участвовать в реакциях. Часто кофакторами являются ионы металлов. Поэтому в небольших количествах они должны поступать в организм с пищей. Для человека список основных металлов включает железо, марганец, магний, кобальт, медь, цинк, молибден. Хотя дефицит хрома и вызывает нарушение толерантности к глюкозе, не было найдено ни одного фермента, использующего хром как кофактор. Ещё одним жизненно необходимым элементом для человека является кальций, но кальций связывается с ферментами не в виде иона, а как белок кальмодулин. Медь - Цитохром с-оксидаза, железо – Каталаза, магний - Глюкозо-6-фосфатаза, никель – Уреаза, цинк – Алкогольдегидрогеназа. Железосерные кластеры — это комплексы железа и серы, связанные с белками. Они играют важную роль в транспорте электронов, окислительно-восстановительных реакциях, и как структурные блоки. Органические кофакторы или Коферменты — вещества, предшественниками которых являются витамины. Коферменты резко специфичны к определенным реакциям, т.к. имеют определенную структуру. К коферментам относятся биотин (витамин Н), ацетил-S-КоА (пантотеновая кислота), никотинамидные коферменты (ниацин) и др. Коферменты вместе с функциональными группами аминокислотных остатков фермента формируют активный центр фермента, на котором происходит связывание с субстратом и образование активированного фермент-субстратного комплекса. Комплекс кофермента и апофермента образует целостную, биологически активную молекулу фермента, называемую холоферментом. Наиболее распространенную группу составляют соединения нуклеотидной природы, а также коферменты, содержащие остатки фосфорной кислоты. Роль коферментов нередко играют витамины или их метаболиты (чаще всего — фосфорилированные формы витаминов группы B). Например, коферментом фермента карбоксилазы является тиаминпирофосфат, коферментом многих аминотрансфераз — пиридоксаль-6-фосфат. В металлоферментах роль, аналогичную роли коферментов, могут исполнять катионы металлов, однако коферментами их обычно не называют. Коферменты обычно непрерывно синтезируются, и их концентрация поддерживается на постоянном уровне внутри клетки. Например, НАДФ «пополняется» через пентозофосфатный путь и S-аденозилметионин с помощью метионинаденозилтрансферазы. Непрерывный синтез означает, что небольшие количества коферментов могут использоваться очень интенсивно. Например, человеческое тело переворачивает свой собственный жир в АТФ каждый день. ТИАМИНОВЫЕ (производные витамина В1): ТМФ - тиаминмонофосфат; ТДФ - тиаминдифосфат; ТТФ - тиаминтрифосфат. ФЛАВИНОВЫЕ (витамин В2): ФМН - флавинмононуклеотид; ФАД - флавинадениндинуклеотид. НИКОТИНАМИДНЫЕ (витамин РР): НАД - никотинамидадениндинуклеотид; НАДФ - никотинамиддинуклеотидфосфат. ПАНТОТЕИНОВЫЕ (витамин В5): KOF A (HS-KOA - HS, коэнзим А); ПИРИДОКСИНОВЫЕ (витамин В6): ПФ - пиридоксальфосфат; ПАФ – пиридоксаминофосфат.