- •Технология программирования
- •Режим доступа к электронному аналогу печатного издания: http://www.Libdb.Sssu.Ru
- •Оглавление
- •Введение
- •1. Основные понятия объектно-ориентированного подхода
- •1.1. Объектно-ориентированная разработка программ
- •1.2. Объектно-ориентированные языки программирования
- •1.3. Сквозной пример
- •Контрольные вопросы
- •2. Первая фаза жизненного цикла – анализ требований и предварительное проектирование системы. Объектно-ориентированное моделирование
- •2.1. Объектная модель системы
- •2.1.1. Объекты и классы
- •2.1.2. Атрибуты объектов
- •2.1.3. Операции и методы
- •2.1.4. Зависимости между классами (объектами)
- •2.1.5. Атрибуты зависимостей
- •Зарегистрирован
- •2.1.6. Имена ролей, квалификаторы
- •2.1.7. Агрегация
- •2.1.8. Обобщение и наследование
- •2.1.9. Абстрактные классы
- •2.1.10. Множественное наследование
- •2.1.11. Связь объектов с базой данных
- •2.2. Построение объектной модели
- •2.2.1. Определение классов
- •2.2.2. Подготовка словаря данных
- •2.2.3. Определение зависимостей
- •2.2.4. Уточнение атрибутов
- •2.2.5. Организация системы классов с использованием наследования
- •2.2.6. Дальнейшее исследование и усовершенствование модели
- •2.3. Пример объектной модели
- •2.3.1. Определение объектов и классов
- •2.3.2. Подготовка словаря данных
- •2.3.3. Определение зависимостей
- •2.3.4. Уточнение атрибутов
- •2.3.5. Организация системы классов с использованием наследования
- •2.3.6. Дальнейшее усовершенствование модели
- •2.4. Выделение подсистем
- •2.4.1. Понятие подсистемы
- •2.4.2. Интерфейсы и окружения
- •2.5. Динамическая модель системы или подсистемы
- •2.5.1. События, состояния объектов и диаграммы состояний
- •2.5.2. Условия
- •2.5.3. Активности и действия
- •2.5.4. Одновременные события. Синхронизация
- •2.5.5. Вложенные диаграммы состояний
- •2.5.6. Динамическая модель банковской сети
- •2.6. Функциональная модель подсистемы
- •2.6.1. Диаграммы потоков данных
- •2.6.2. Описание операций
- •2.6.3. Ограничения
- •2.6.4. Функциональная модель банковской сети
- •2.7. Заключительные замечания к разделу
- •Контрольные вопросы
- •3. Вторая фаза жизненного цикла – конструирование системы
- •3.1. Разработка архитектуры системы
- •3.1.1. Разбиение системы на модули
- •3.1.2. Выявление асинхронного параллелизма
- •3.1.3. Распределение модулей и подсистем по процессорам и задачам
- •3.1.4. Управление хранилищами данных
- •3.1.5. Управление глобальными ресурсами
- •3.1.7. Пограничные ситуации
- •3.1.8. Обзор архитектур прикладных систем
- •3.2. Архитектура системы управления банковской сетью
- •3.3. Разработка объектов
- •3.3.1. Совместное рассмотрение трёх моделей
- •3.3.2. Разработка алгоритмов, реализующих полученные операции
- •3.3.3. Оптимизация разработки
- •3.3.4. Реализация управления
- •3.3.5. Уточнение наследования классов
- •3.3.6. Разработка зависимостей
- •Контрольные вопросы
- •4. Сравнительный анализ объектно-ориентированных методологий разработки программных систем
- •4.1. Методология omt
- •4.2. Методология sa/sd
- •4.3. Методология jsd
- •4.4. Методология osa
- •Аналитические возможности сравниваемых методологий объектно-ориентированного анализа
- •Возможности сравниваемых методов объектно-ориентированного анализа, используемые на этапе разработки системы
- •5. Третья фаза жизненного цикла – реализация объектно-ориентированного проекта
- •5.1. Объектно-ориентированный стиль программирования
- •5.2. Объектно-ориентированные системы программирования
- •5.3.1. Реализация классов
- •5.3.2. Порождение объектов
- •5.3.3. Вызов операций
- •5.3.4. Использование наследования
- •5.3.5. Реализация зависимостей
- •5.4. Другие объектно-ориентированные системы программирования
- •5.4.1. Реализация классов
- •5.4.2. Порождение объектов
- •5.4.3. Вызов операций
- •5.4.4. Реализация наследования
- •5.4.5. Реализация зависимостей
- •5.5. Не объектно-ориентированные системы программирования
- •5.5.1. Преобразование классов в структуры данных
- •5.5.2. Передача параметров методам
- •5.5.3. Размещение объектов в памяти
- •5.5.4. Реализация наследования
- •5.5.5. Выбор методов для операций
- •5.5.6. Реализация зависимостей
- •5.5.7. Объектно-ориентированное программирование на Фортране
- •5.5.8. Чем неудобны не объектно-ориентированные системы программирования
- •Контрольные вопросы
- •Библиографический список
- •Учебное издание
Контрольные вопросы
Технология программирования: определение, цель и инструментарий.
Стадии разработки и жизненный цикл ПО. Основные стадии цикла разработки и его характеристики.
Создание автоматизированной информационной системы в соответствии с ГОСТ 34.601–90.
Этапы жизненного цикла ПО в соответствии с ISO/IEC 12207:1995.
Стадии жизненного цикла ПО, взаимосвязь между процессами и стадиями.
Модели жизненного цикла ПО, их особенности и сравнительная характеристика.
Понятие алгоритма и способы его описания.
Блок-схема алгоритма, предикативные и функциональные вершины (привести примеры).
Понятие UML, его назначение и области применимости.
Виды диаграмм UML. Диаграмма классов.
Виды диаграмм UML. Диаграммы компонентов и составной структуры.
Виды диаграмм UML. Диаграммы развёртывания и объектов.
Виды диаграмм UML. Диаграммы пакетов и профилей.
Виды диаграмм UML. Диаграмма деятельности и схемы алгоритмов по ГОСТ 19.701–90.
Виды диаграмм UML. Диаграммы автомата и прецедентов.
Виды диаграмм UML. Диаграммы коммуникации, последовательности и сотрудничества.
Виды диаграмм UML. Диаграммы обзора взаимодействия и синхронизации.


2. Первая фаза жизненного цикла – анализ требований и предварительное проектирование системы. Объектно-ориентированное моделирование
Как известно, проектирование прикладной программной системы начинается с анализа требований, которым она должна будет удовлетворять. Такой анализ проводится с целью понять назначение и условия эксплуатации системы настолько, чтобы суметь составить её предварительный проект.
При объектно-ориентированном подходе анализ требований к системе сводится к разработке моделей этой системы. Моделью системы (или какого-либо другого объекта или явления) мы называем формальное описание системы, в котором выделены основные объекты, составляющие систему, и отношения между этими объектами. Построение моделей – широко распространённый способ изучения сложных объектов и явлений. В модели опущены многочисленные детали, усложняющие понимание. Моделирование широко распространено и в науке, и в технике.
Модели помогают:
проверить работоспособность разрабатываемой системы на ранних этапах её разработки;
общаться с заказчиком системы, уточняя его требования к системе;
вносить (в случае необходимости) изменения в проект системы (как в начале её проектирования, так и на других фазах её жизненного цикла).
В настоящее время существует несколько технологий объектно-ориентированной разработки прикладных программных систем, в основе которых лежит построение и интерпретация на компьютере моделей этих систем. Мы подробно ознакомимся с одной из таких технологий – OMT (Object Modeling Techniques). Эта технология оказала большое влияние на других разработчиков объектно-ориентированных технологий, а книга, в которой она описана, является одной из наиболее часто цитируемых книг по данному направлению. Более того, система обозначений (графический язык) для описания моделей, предложенная в этой книге, широко применяется в других технологиях и в статьях по объектно-ориентированной разработке программных систем.
В технологии OMT проектируемая программная система представляется в виде трёх взаимосвязанных моделей:
объектной модели, которая представляет статические, структурные аспекты системы, в основном связанные с данными;
динамической модели, которая описывает работу отдельных частей системы;
функциональной модели, в которой рассматривается взаимодействие отдельных частей системы (как по данным, так и по управлению) в процессе её работы.
Эти три вида моделей позволяют получить три взаимно-ортого-нальных представления системы в одной системе обозначений. Совокупность моделей системы может быть проинтерпретирована на компьютере (с помощью инструментального программного обеспечения), что позволяет продемонстрировать заказчику характер работы с будущей системой и существенно упрощает согласование предварительного проекта системы.
Модели, разработанные и отлаженные на первой фазе жизненного цикла системы, продолжают использоваться на всех последующих его фазах, облегчая программирование системы, её отладку и тестирование, сопровождение и дальнейшую модификацию.
Как будет показано в дальнейшем, модели системы не связаны с языком программирования, на котором будет реализована система.
