- •Вопросы итоговой аттестации по биохимии
- •Классификация и строение углеводов. Функции углеводов различных классов.
- •Классификация аминокислот и их биохимические функции
- •Уровни организация белков. Типы химических связей, участвующие в формировании пространственной структуры белка.
- •Денатурация белка и факторы, вызывающие денатурацию белка.
- •Строение и функции липидов.
- •6. Строение триглицеридов. Роль триглицеридов в метаболизме.
- •7. Строение нуклеотидов. Роль нуклеотидов в метаболизме.
- •8. Строение фосфолипидов. Роль фосфолипидов в метаболизме.
- •9. Строение и функции эйкозаноидов.
- •10. Строение и функции холестерина.
- •13. Биологическая роль макро- и микроэлементов.
- •15. Роль фосфопиридоксаля в метаболизме
- •17.Биохимическая функция витамина в12.
- •18.Биологическая роль пантотеновой кислоты(в5)
- •19.Биологическая роль рибофлавина(в2)
- •20.Биологическая роль никотинамида.
- •21. Биохимические функции тиаминпирофосфата.
- •22. Биохимическая роль витамина с.
- •23. Биологическая роль тетрагидрофолиевой кислоты (тгфк).
- •24. Биологическая роль витамина d.
- •25. Биологическая роль витамина а.
- •26. Биологическая роль витамина е.
- •27. Биологическая роль витамина к .
- •29. Строение и классификация ферментов.
- •30. Конкурентное и неконкурентное ингибирование ферментов.
- •31. Особенности биологического катализа.
- •32. Классификация гормонов. Роль гормонов в регуляции метаболизма.
- •33. Гормоны надпочечников и их биохимические функции.
- •34. Гормоны гипофиза и их биологическая роль.
- •35. Биологическая роль половых гормонов.
- •36. Биологическая роль гормонов коры надпочечников.
- •37. Биологическая роль гормонов поджелудочной железы.
- •38. Гормоны щитовидной железы. Их влияние на метаболизм.
- •41. Биохимическая роль вторичных мессенджеров в метаболизме.
- •42.Макроэргические соединения и их роль в метаболизме.
- •43. Дыхательная цепь в митохондриях.
- •44. Последовательность расположения и строение переносчиков электронов в дыхательной цепи.
- •45. Процесс окислительного фосфорилирования, его биологическая роль.
- •47. Механизмы образования свободных радикалов. Антиоксидантные системы в клетках.
- •49. Биохимические механизмы окислительного декарбоксилирования пирувата.
- •51. Биосинтез гликогена.
- •52. Гликолиз и его биологическое значение.
- •53. Глюконеогенез и его биологическая роль.
- •54. Пентозофосфатный путь окисления углеводов.
- •55. Особенности углеводного обмена у жвачных животных. Пути синтеза глюкозы у жвачных животных.
- •62. Синтез триацилглицеридов и фосфолипидов.
- •63. Кетоновые тела и их роль в метаболизме.
- •64. Физико-химические свойства белков. Изоэлектрическое состояние и изоэлектрическая точка аминокислот и белков.
- •65.Биохимические механизмы переваривания белков в жкт.
- •66.Механизмы реакций трансаминирования и дезаминирования аминокислот.
- •67.Декарбоксилирование аминокислот. Биологическая роль продуктов декарбоксилирования.
- •69.Биологические механизмы окисления нуклеотидов
- •70.Строение молекулы днк
- •71. Биохимические механизмы синтеза дн
- •72. Репликация и репарация.
- •73. Строение рнк. Виды рнк. Их роль в метаболизме.
- •74. Биохимические механизмы синтеза рнк.
- •75. Биохимические механизмы синтеза белка.
Классификация аминокислот и их биохимические функции
Аминокисло́ты — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.
Классификация аминокислот.
1. По способности радикалов к взаимодействию с Н 2О:
- неполярные (гидрофобные) — плохо растворимые;
- полярные (гидрофильные) незаряженные — хорошо растворимые;
- отрицательно заряженные;
- положительно заряженные.
2. По биологическому и физиологическому значению:
- незаменимые — не могут синтезироваться организмом из других соединений и целиком поступают с пищей (валин, лейцин, изолейцин, треонин, метионин, лизин, фенилаланин, триптофан);
- полузаменимые — образуются в недостаточном количестве в организме, поэтому частично поступают с пищей (аргинин, тирозин, гистидин);
- заменимые — синтезируются в организме (все остальные).
3. По функциональной принадлежности:
- алифатические монокарбоновые кислоты: глицин, аланин, валин, лейцин, изолейцин;
- алифатические оксиаминокислоты: серин, треонин;
- серосодержащие: цистеин, метионин;
- диаминомонокарбоновые: лизин, аргинин;
- моноаминодикарбоновые: глутаминовая кислота, глутамин;
- ароматические: фенилаланин, тирозин;
- гетероциклические: гистидин, триптофан;
Уровни организация белков. Типы химических связей, участвующие в формировании пространственной структуры белка.
Белки́ — высокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединённых в цепочку пептидной связью. 4 уровня структурной организации белков: первичная, вторичная, третичная и четвертичная структуры
1)Первичной, самой простой является полипептидная цепь, т.е. нить аминокислот, связанных между собой пептидными связями. В первичной структуре связи являются ковалентными, а следовательно прочными. 2) Вторичной структура – это когда нить закручена в виде спирали, между группами COOH, находящимися на одном витке спирали, и группами NH2 на другом витке образуются водородные связи. Водородные связи слабее ковалентных, но большое их количество обеспечивает образование достаточно прочной структуры. 3) Нить амино-кислот свертывается, образуя клубок – фибриллу, для каждого белка специфичную. Таким образом возникает третичная структура. Связи в третичной структуре возникают за счет: гидрофобных взаимодействий (сближение в водном растворе), электростатических сил (взаимодействие между положительными и отрицательными остатками аминокислот), небольшого числа ковалентных дисульфидных связей. 4) Благодаря соединению нескольких молекул белков между собой образуется четвертичная структура.
Денатурация белка и факторы, вызывающие денатурацию белка.
Денатурация белка - нарушение естественной структуры белка под действием некоторых факторов. Факторы денатурации:
1)Кислоты, щёлочи, соли (в том числе и соли тяжелых металлов).
2)Температура (при температуре 40-50 градусов по Цельсию).
3)Радиационное воздействие.
Денатурация бывает обратимой и не обратимой. Обратимая - когда не затронута первичная структура белка (полипептидная цепь). Не обратимая - когда разрушена первичная структура белка, а точнее разорвана пептидная связь между аминокислотами.
Под влиянием различных физических и химических факторов белки подвергаются свертыванию и выпадают в осадок, теряя нативные(природные) свойства. Таким образом, под денатурацией следует понимать нарушение общего плана уникальной структуры нативной молекулы белка, преимущественно ее третичной структуры, приводящее к потере характерных для нее свойств (растворимость, электрофоретическая подвижность, биологическая активность и т.д.). Большинство белков денатурирует при нагревании их растворов выше 50–60°С.
Факторы, которые вызывают денатурацию белков, можно разделить на физические и химические.
Физические факторы
1. Высокие температуры. Для разных белков характерна различная чувствительность к тепловому воздействию. Часть белков подвергается денатурации уже при 40-500С. Такие белки называют термолабильными. Другие белки денатурируют при гораздо более высоких температурах, они являются термостабильными.
2. Ультрафиолетовое облучение
3. Рентгеновское и радиоактивное облучение
4. Ультразвук
5. Механическое воздействие (например, вибрация).
Химические факторы
1. Концентрированные кислоты и щелочи. Например, трихлоруксусная кислота (органическая), азотная кислота (неорганическая).
2. Соли тяжелых металлов (например, CuSO4).
3. Органические растворители (этиловый спирт, ацетон)
4. Растительные алкалоиды.
5. Мочевина в высоких концентрациях
