Скачиваний:
27
Добавлен:
14.06.2022
Размер:
1.37 Mб
Скачать

Angular function

Equation for the angular function:

1

2 S( )

k 2

S( )

2

 

 

or:

2 S( )

2

S( ) 0

2

k

 

 

 

Solution:

S( ) g cos(k ) hsin(k )

0 360

Evidently k is an integer number.

11

Radial function

Equation for the radial function:

r

 

 

 

 

 

r

 

 

 

R(r) r

R(r) k 2

r

 

 

R(r)

 

2

R(r)

0

or:

 

r

 

 

k

 

 

 

r

 

r

 

r

 

 

 

 

Let us try to find a solution of this equation by substituting: R(r) r

 

 

r k 2

r

0

 

2 k 2

 

r

r

 

 

 

 

 

The solution:

R(r) crk dr k

 

12

General solution of the Laplace’s equation in a cylindrical coordinate system

Combining the solutions we will get:

Uk (r, ) crk dr k g cos(k ) hsin(k )

This function is known as circular (angular) harmonic of order k.

General solution:

U (r, ) ck rk dk r k gk cos(k ) hk sin(k )

k 1

13

Application of the variable separation method for the magnetic field modeling

0

 

(2)

 

 

 

i

 

R

 

C

 

 

A

 

(1)

 

 

The scalar magnetic potential exists in the domain (1), but does not exist in the domain (2).

14

Reduced scalar magnetic potential

(редуцированный скалярный магнитный потенциал)

Magnetic field intensity may be presented as

M

0

J

 

 

 

 

 

H (r ) Hc (r )

Hm (r )

 

is the field intensity induced by the current sources ( J )

Hc (r )

 

is the field intensity induced by the magnetized objects (M )

Hm (r )

Hm (r )

 

 

 

is the potential field:

Hmdl 0

A special potential may be introduced:

 

r0

 

Um (r ) Hm

dl

 

 

 

 

r

 

Hm (r ) Um

15

Combination of scalar magnetic potential and the reduced magnetic potential

M

0

J

Reduced magnetic potential exists in the whole space

Scalar magnetic potential exists only in a simply connected

domain with no currents inside

Inside the M

 

U is the scalar magnetic potential

- domain: H (r ) U

Outside the M - domain:

 

 

Hc

 

 

 

 

 

 

H (r ) Um

 

 

 

 

 

 

 

 

1

 

 

 

)

 

 

)

 

 

 

 

J (r

(r

r

The field induced by current

 

 

 

 

 

 

 

dr

sources may be calculated

Hc

 

 

 

 

 

 

3

 

 

 

 

by Biot – Savart Law:

 

4 J

 

 

r

r

 

 

 

16

 

 

 

 

 

 

 

 

 

 

 

 

Combination of scalar magnetic potential and reduced magnetic potential

M

 

0

J

(1)

(2)

Inside the magnetized domain (1) the scalar magnetic potential satisfies the differential equation

(1) : U 0

If const

U 0

 

 

In the domain (2) the reduced magnetic potential satisfies the differential equation

(2) :

Um

0

This equation is valid in

 

the domain (1) as well.

17

 

 

 

Combination of scalar magnetic potential and reduced magnetic potential

 

 

 

 

 

- is the border of the domain

 

 

0

 

 

with the magnetized

matter

 

M

 

J

Inside the magnetized domain

 

Hc dl

(1)

(2)

 

 

 

 

 

 

 

 

 

 

 

 

 

Scalar magnetic

Uc

 

r0

 

 

 

 

potential of the currents

(r ) Hc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

0dl

Solution of the problem should provide boundary conditions on

1) H (1) H (2) 2) Bn(1) Bn(2) Hn(1) 0 Hn(2)

H (1)

H ( 2m) H (2)c

 

 

 

 

 

Hn(1) 0 Hn(2m) 0 Hn( 2c)

U (1)

Um(2) Uc(2)

 

18

Magnetic field of the line current near a magnetized cylinder

 

 

0

 

 

(2)

 

 

 

 

R

i

Um , Hc

(1)

 

 

 

 

C

 

 

b

U

 

 

 

The final goal is to express the potentials by expansions

U rk gk(1) cos(k ) hk(1) sin(k )

k 1

Um r k gk(2) cos(k ) hk(2) sin(k )

k 1

Uc

19

The scalar potential induced by the current line

0

 

r

 

i

r0

 

 

 

 

 

Hc

Uc Hdl

 

 

2 r

 

 

 

 

r

 

 

 

 

 

 

 

 

i

Let us choose a point (line) of zero potential here

Arc length =

r

The field intensity along the arc = const =

i

 

 

2 r

 

 

 

 

i

 

i

 

The potential in the point

r :

Uc

r

 

 

 

2 r

2

 

 

 

 

 

 

 

 

 

 

The dependence

Uc is anti-symmetric

with respect to the angular coordinate:

 

 

Uc Uc

 

 

 

 

20