
- •Часть 3
- •Введение
- •1. Основные положения динамики и уравнения движения точки
- •1.1. Введение
- •1.2. Основные аксиомы классической механики
- •1.3. Дифференциальные уравнения движения материальной точки
- •Частные случаи
- •1.4. Две основные задачи динамики точки
- •Первая задача
- •Вторая задача
- •1.5. Основные виды прямолинейного и криволинейного движения точки
- •1.6. Движение несвободной материальной точки
- •Движение точки по поверхности
- •Движение точки по гладкой кривой линии
- •1.7. Элементы теории колебаний материальной точки
- •Затухающие колебания
- •Свободные колебания
- •Вынужденные колебания
- •2. Относительное движение материальной точки
- •2.1. Дифференциальные уравнения относительного движения материальной точки
- •2.2. Частные случаи Относительное движение по инерции
- •Относительное равновесие
- •Инерциальные системы отсчета
- •2.3. Движение точки относительно Земли
- •Маятник Фуко
- •Отклонение движущихся тел вправо в Северном полушарии
- •Отклонение падающих тел к востоку
- •2.4. Невесомость
- •3. Геометрия масс
- •3.1. Центр масс
- •3.2. Моменты инерции
- •Моменты инерции относительно точки и оси
- •Моменты инерции относительно осей координат
- •3.3. Теорема о моментах инерции относительно параллельных осей (теорема Штейнера))
- •3.4. Моменты инерции простейших однородных тел
- •О z' днородный стержень
- •Прямоугольная пластина
- •Круглый диск
- •Круглый цилиндр
- •3.5. Моменты инерции относительно осей, проходящих через заданную точку
- •3.6. Эллипсоид инерции
- •3.7. Свойства главных осей инерции
- •4. Общие теоремы динамики точки и системы
- •4.1. Простейшие свойства внутренних сил системы
- •4.2. Дифференциальные уравнения движения системы
- •4.3. Теоремы об изменении количества движения и о движении центра масс Количество движения точки и системы
- •Вычисление количества движения системы
- •Элементарный и полный импульсы силы
- •Теорема об изменении количества движения точки
- •Теорема об изменении количества движения системы
- •Законы сохранения количества движения
- •Теорема о движении центра масс системы
- •Дифференциальные уравнения поступательного движения твердого тела
- •4.4. Теорема об изменении кинетического момента
- •Кинетический момент относительно оси вращения при вращательном движении твердого тела
- •Теорема об изменении кинетического момента точки
- •Теорема об изменении кинетического момента системы
- •Законы сохранения кинетических моментов
- •Дифференциальное уравнение вращения твердого тела вокруг неподвижной оси
- •Теорема об изменении кинетического момента системы в относительном движении по отношению к центру масс
- •Дифференциальные уравнения плоского движения твердого тела
- •Теорема Резаля
- •4.5. Теорема об изменении кинетической энергии Работа силы
- •Примеры вычисления работы силы
- •Кинетическая энергия
- •Теорема об изменении кинетической энергии точки
- •Теорема об изменении кинетической энергии системы
- •Теорема об изменении кинетической энергии в относительном движении
- •4.6. Потенциальное силовое поле
- •Потенциальное силовое поле и силовая функция
- •Поверхности уровня. Силовые линии
- •Потенциальная энергия
- •Силовая функция и потенциальная энергия системы
- •4.7. Закон сохранения механической энергии Закон сохранения механической энергии точки
- •Закон сохранения механической энергии системы
- •5. Принцип даламбера. Динамические реакции при вращении тела вокруг неподвижной оси
- •5.1. Принцип Даламбера Принцип Даламбера для материальной точки
- •Принцип Даламбера для системы материальных точек
- •Силы инерции твердого тела в частных случаях его движения
- •5.2. Динамические реакции при вращении твердого тела вокруг неподвижной оси Формулы для реакций
- •Статическая уравновешенность
- •Динамическая уравновешенность
- •Основные виды неуравновешенностей
- •6. Аналитическая механика
- •6.1. Связи и их классификация
- •6.2. Возможные перемещения
- •6.3. Элементарная работа силы на возможном перемещении. Идеальные связи
- •6.4. Принцип возможных перемещений
- •6.5. Обобщенные координаты системы
- •6.6. Обобщенные силы
- •6.7. Условия равновесия системы
- •6.8. Общее уравнение динамики
- •6.9. Уравнения Лагранжа
- •Заключение
- •Библиографический список
- •Оглавление
- •Часть 3
- •394026 Воронеж, Московский просп., 14
1.3. Дифференциальные уравнения движения материальной точки
Используя основной закон динамики, можно вывести дифференциальные уравнения движения материальной точки в различных системах координат. По аксиоме о связях и силах реакций связей можно получить дифференциальные уравнения движения и несвободной точки так же, как и для свободной, только ко всем приложенным к точке силам надо добавить силы реакций связей.
Силы реакций связей при движении точки могут зависеть в общем случае не только от вида наложенных на точку связей и приложенных к ней сил, но и от характера ее движения, например от ее скорости при движении в воздухе или в какой-либо другой сопротивляющейся среде. В дальнейшем не будем делать различия между свободной и несвободной материальными точками. Обозначая равнодействующую всех заданных сил и сил реакций связей , а массу точки , получаем
. (7)
И
з
кинематики точки известно, что ускорение
выражается через радиус-вектор
(рис. 3):
.
Д
Рис. 3
. (8)
Если спроецировать обе части уравнений (7) или (8) на координатные оси, то можно получить дифференциальные уравнения движения точки в проекциях на эти оси.
В декартовой системе координат в общем случае
,
,
.
Проекции ускорения на координатные оси можно выразить через вторые производные по времени от координат движущейся точки:
;
,
.
Дифференциальные уравнения движения материальной точки в прямоугольной декартовой системе координат имею вид
,
,
. (9)
Частные случаи
Если известно, что материальная точка движется в одной и той же плоскости, то, принимая ее за координатную плоскость , имеем
, . (10)
Так
как z=0,
то, следовательно,
.
В
случае движения точки по прямой линии,
направив по ней координатную ось
,
получим одно дифференциальное уравнение
прямолинейного движения точки
. (11)
Так
как при движении
,
то, следовательно,
.
Д
ля
естественных подвижных осей координат
(рис. 4), проецируя обе части (7) на эти
оси, получаем:
,
,
,
г
Рис. 4
,
,
,
и
,
,
– соответственно проекции ускорения
и равнодействующей силы на касательную,
главную нормаль и бинормаль к траектории
в рассматриваемом положении движущейся
точки. Учитывая, что
,
,
,
где
– радиус кривизны траектории,
дифференциальные уравнения движения
точки в проекциях на естественные оси
имеют вид
,
,
. (12)
Второе уравнение из (12) можно преобразовать
,
,
где
– угловая скорость вращения касательной
к траектории движущейся точки и,
следовательно,
– угол смежности между касательными в
двух бесконечно близких точках.
Дифференциальные уравнения (12) можно представить в виде
,
,
. (12')
Эта
форма дифференциальных уравнений
движения точки удобна при исследовании
некоторых случаев полета снарядов и
ракет, особенно по траектории, лежащей
в плоскости. Тогда
будет углом между касательной к траектории
и любой осью, лежащей в плоскости
траектории.
Дифференциальные уравнения движения точки можно представить в любой другой системе координат. Для этого надо знать выражения проекций ускорения на эти оси координат.