Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие 700169.doc
Скачиваний:
5
Добавлен:
01.05.2022
Размер:
994.3 Кб
Скачать

10.3. Методика оценки сетевых архитектур

Сравнение сетей, построенных на основе описанных выше сетевых архитектур, производилось по скорости выполнения трех различных операций:

  • классического обмена информацией между клиентом и сервером;

  • совместной обработки изображений;

  • математического моделирования.

Результаты сравнения обобщаются на следующих рисунках, где показаны зависимости времени реакции сети от количества обслуживаемых пользователей при выполнении каждой из указанных операций и предложены различные архитектуры сетей для их поддержания. Для построения зависимостей использовались данные, полученные в результате моделирования сетевых операций с помощью процесса планирования Traffic Mappingo фирмы NCRI. Эти данные не универсальны и предназначены только для сравнения средней относительной производительности разных сетевых архитектур. Скорости передачи информации в реальных сетях могут отличаться от указанных. Это зависит от конкретной реализации продукта, дизайна и настройки программного обеспечения, а также способов их применения.

При моделировании сетевых операций были приняты следующие важные допущения и ограничения.

Реакция сети - это время, необходимое для выполнения исследуемой операции или группы операций. Время ответа сервера не учитывалось, исследовалась только производительность сети. Чтобы получить возможность полноценного сравнения архитектур, для всех рабочих групп использовались только адаптеры Ethernet. Предполагалось, что каждая операция выполняется в сети независимо от других. Например, в соответствии с результатами выполнения классической клиент-серверной операции в одном Ethernet-сегменте может работать более 40 пользователей, но это справедливо лишь в том случае, когда сеть выполняет только эту операцию. Использовался только протокол TCP/IP. Параметры производительности сетевых устройств, такие как задержки, время ожидания, общий диапазон и другие, соответствовали характеристикам реально существующих маршрутизаторов и коммутаторов.

Число пользователей, которые могут одновременно работать в сети с каждой конкретной архитектурой, определялось по следующей схеме.

1. Подсчитывалось количество пользователей в рабочей группе, которые могут одновременно запустить исследуемую операцию.

2. Определялся объем информации, который может сгенерировать одна рабочая группа.

3. Подсчитывалось количество рабочих групп, которые могут одновременно использовать ресурсы магистрали.

4. Число рабочих групп в магистрали умножалось на число пользователей в одной рабочей группе.

С помощью этой схемы можно достаточно точно оценить число пользователей, которых может обслужить каждая сетевая архитектура. Максимальное число пользователей означает, что производительность какой-либо части сети достигла своего предела. Следует отметить, что число пользователей указано для обычной, а не "расщепленной" сетевой архитектуры.

Итак, проведем сравнительный анализ характеристик описанных выше архитектур.

10.4. Корреляционный анализ

Для примера рассмотрим выполнение программы корреляционного анализа в реальной сети, работающей на целлюлозно-бумажной фабрике. Данная программа позволяет вместо ежедневного сбора данных о качестве продукции и их анализа (вручную) использовать операции типа "клиент-сервер". При этом предполагается, что будут сокращены потери и улучшено качество продукции более чем на 10%.

Контроль качества при производстве целлюлозы и бумаги могут выполнять одновременно 20 пользователей. Оператор или инженер получает необходимую информацию с серверов, расположенных в разных местах большой фабрики. В процессе работы осуществляется анализ качества продукции и эффективности ее изготовления, а затем подготавливаются статистические отчеты, которые сохраняются на локальном файл-сервере. Корреляционный анализ может потребовать выполнения следующих операций:

  • передачи форм, триггеров и правил, используемых базой данных;

  • установки удаленной связи;

  • осуществления запроса на сервер и получения ответа с него;

  • записи результатов статистического анализа.

Загрузка сети - умеренная. Большинство операций типа "клиент-сервер" выполняется между рабочей группой и магистралью, то есть между клиентами ЛВС и подключенным к магистрали сервером. Поскольку качество продукции контролируется в реальном времени, то информационный поток также зависит от времени. Поэтому для уменьшения количества ретрансляций необходима "плоская" сетевая архитектура. Максимальная нагрузка на сеть приходится на время пересменок, когда линия переключается на обслуживание новых продуктов, особых ситуаций на фабрике и проектов долговременного планирования.

На рис. 10.6 показано, какое время реакции сети необходимо для завершения большой программой корреляционного анализа операции типа "клиент-сервер". И хотя время реакции является важным параметром (поскольку программа работает в производственной среде), в данном случае он не является критичным, т.к. сеть должна одновременно поддерживать только 20 пользователей. Нужно учесть, что для вычисления истинного времени реакции системы следует ко времени передачи данных по сети добавить время обработки запроса на сервере. Например, если сервер обрабатывает запрос за 30 с, то на одну операцию в FDDI-среде тратится примерно 50 с (19 с сетевого времени плюс 30 с работы сервера), а в ATM-сети - только 40 с.

Рис. 10.6. Характеристики цепей, обслуживающих программу корреляционного анализа

За точку отсчета взята производительность в рабочей группе Ethernet. Один сегмент Ethernet обеспечивает лучшее время реакции из всех возможных вариантов, поскольку между клиентом и сервером нет посредников, кроме собственно CSMA/CD-связи по Ethernet. К одной Ethernet-линии можно подключить более 40 клиентов, поэтому логично ожидать, что сеть сможет обслуживать 20 пользователей одновременно. К сожалению, длина кабеля Ethernet ограничена, поэтому вряд ли удастся подключить все компьютеры целлюлозно-бумажной фабрики к одному сегменту Ethernet. Следовательно, в данном случае такое решение не подходит.

Время реакции в обеих коммутируемых архитектурах почти на 50% меньше, чем в традиционных FDDI-сетях с маршрутизацией или совместным доступом. Это достигается с помощью специализированных механизмов коммутации. Практически все разработчики согласны, что коммутаторы кадров будут обеспечивать меньшее время задержки, чем большинство мостов и маршрутизаторов, предлагаемых сегодня на рынке и используемых в корпоративных сетях. Более быстрые сети обеспечивают меньшее время реакции при выполнении клиент-серверных приложений.

Маршрутизируемая фрагментированная магистраль поддерживает более 50 пользователей - немногим больше, чем обычный сегмент Ethernet. Ограничивающим фактором является Ethernet-канал между маршрутизатором и сервером, который работает с той же скоростью, что и остальная сеть, - 10 Мбит/с. Естественно, что когда пользователи нескольких рабочих групп пытаются одновременно получить доступ к серверу, в этом канале образуется затор. К сожалению, даже самый быстрый маршрутизатор не способен предотвратить этот затор, поскольку передача информации в стандартной Ethernet-связи не может осуществляться быстрее, чем со скоростью10 Мбит/с. Разработчики сети могут устранить затор, добавив более скоростное подключение к серверу, например FDDI или 100 Мбит/с Ethernet. Это может ускорить выполнение корреляционного анализа, даже если его будет осуществлять гораздо большее число пользователей.

Использование коммутатора кадров 10/100 для выполнения программы корреляционного анализа позволяет избежать заторов на сервере, если установить на него коммутируемый 100 Мбит/с интерфейс. Поскольку в данной архитектуре к серверу может получить одновременный доступ большее количество пользователей из нескольких рабочих групп, то такая сеть обеспечивает поддержку 150 пользователей вместо 50. Кроме того, пользователи смогут оценить преимущества скоростной передачи, характерной для технологии коммутации.

Даже если 12 рабочих групп Ethernet одновременно получат доступ к магистральному серверу, выделенный серверный 100 Мбит/с Ethernet-интерфейс не будет переполнен. Каждый из двенадцати 10 Мбит/с Ethernet-портов насыщается запросами и ответами клиентов, отправляемыми на сервер. Единственный фактор, ограничивающий число обслуживаемых пользователей, - количество коммутируемых 10 Мбит/с портов, к которым подключаются рабочие группы. Как только портов для подключения рабочих групп не остается, архитектура исчерпывает свои возможности. Чтобы обеспечить большее число Ethernet-портов, нужно подключить несколько коммутаторов, и тогда количество одновременно работающих пользователей можно будет увеличить.

FDDI-решение обеспечивает высокоскоростную связь с серверами. В исследуемом случае это кольцо FDDI с совместным доступом, работающее со скоростью 100 Мбит/с. К FDDI-кольцу, в отличие от коммутатора кадров 10/100, можно подключать значительно больше рабочих групп, так как эта технология не имеет ограничений по количеству портов. Сетевые администраторы могут с помощью маршрутизатора, расположенного между Ethernet и FDDI, подключать рабочие группы к 100 Мбит/с кольцу, пока магистраль не будет полностью насыщена. Это решение позволяет обслуживать более 1300 пользователей.

К сожалению, время реакции FDDI выше, чем в коммутируемой архитектуре, и оно будет увеличиваться, если сегментировать магистраль после ее насыщения. Это объясняется тем, что в сегментированной FDDI-магистрали информация во время каждого запроса серверу должна проходить через два маршрутизатора.

ATM-решение обеспечивает отличное время реакции и обслуживает предельно большое количество пользователей. В сущности, ATM-решение поддерживает такое число пользователей, которое более чем в 400 раз превышает необходимое. Поэтому такая архитектура не является оптимальной.

Вероятно, лучшим выбором для работы данного программного обеспечения является либо коммутация кадров 10/100, либо FDDI. Эти решения поддерживают высокоскоростные линии и могут передавать данные по оптоволоконному кабелю для подключения пользователей на значительном расстоянии. Заметим, что FDDI является более "традиционной" технологией для производственной сети, а решение с коммутацией кадров 10/100 обеспечивает лучшую производительность и, скорее всего, является более экономически выгодным, поскольку не требует дополнительных затрат на FDDI-интерфейсы.