
- •А.П. Бырдин н.В. Заварзин а.А. Сидоренко л.П. Цуканова
- •А.П. Бырдин н.В. Заварзин а.А. Сидоренко л.П. Цуканова
- •Введение
- •1. Ортогональные системы функций и обобщенные ряды Фурье. Интегралы Фурье
- •1.1. Исторические замечания
- •1.2. Гильбертово пространство. Ряды Фурье в гильбертовом пространстве
- •1.3. Тригонометрические ряды Фурье
- •1.4. Интегральная формула Фурье. Интеграл Фурье
- •1.5. Условия представимости функции интегралом Фурье
- •1.6. Комплексная форма интеграла Фурье. Преобразование Фурье
- •Преобразование Лапласа и его приложения
- •1.1. Свойства преобразования Лапласа
- •2.2. Решение дифференциальных уравнений операционным методом
- •Импульсные функции и их приложение к решению дифференциальных уравнений
- •Приложение операционного метода к решению систем линейных дифференциальных уравнений с постоянными коэффициентами
- •2.5. Индивидуальные задания
- •Ответы к индивидуальным заданиям
- •Задачи механики и физики, приводящие к основным уравнениям математической физики
- •3.1. Понятие уравнения в частных производных и его решения. Основные уравнения математической физики. Уравнения современной математической физики
- •3.2. Уравнения Пуассона и Лапласа. Вывод уравнений для потенциала электрического поля
- •3.3. Получение уравнения Гельмгольца из уравнений электромагнитного поля
- •3.4. Уравнение распространения тепла в изотропном твердом теле
- •3.5. Уравнение колебаний струны
- •4. Решение одномерных уравнений математической физики. Задача Коши и краевые задачи Коши
- •4.1. Распространение тепла в неограниченном стержне. Фундаментальное решение уравнения теплопроводности
- •4.2. Метод Фурье для одномерного уравнения теплопроводности. Распространение тепла в ограниченном стержне
- •4.3. Общее решение волнового уравнения в случае одной пространственной переменной. Решение Даламбера
- •4.4. Задача Коши для одномерного волнового уравнения. Формула Даламбера
- •4.5. Колебания ограниченной струны. Решение методом Фурье
- •5. Метод Фурье для уравнений математической физики в двумерном и трехмерном пространствах
- •5.1. Оператор Лапласа в декартовых и криволинейных координатах. Граничные задачи для уравнений Лапласа и Пуассона
- •5.2. Разделение переменных в уравнении Лапласа в декартовой и сферической системах координат
- •5.3. Определение потенциала электрического поля внутри параллелепипеда
- •5.4. Разделение переменных в уравнении Лапласа в цилиндрических координатах
- •5.5. Задача Дирихле для уравнения Лапласа в круге. Интеграл Пуассона
- •5.6. Распространение тепла в бесконечном цилиндре
- •5.7. Распространение электромагнитных волн в цилиндрическом волноводе
- •Решение уравнения Гельмгольца методом Фурье
- •5.8. Движение электрона в атоме водорода. Квантовый подход
- •6. Элементы теории специальных функций
- •6.1. Недостаточность элементарных функций для решений дифференциальных уравнений. Дифференциальные уравнения, как источник функций
- •6.2. Гипергеометрическое уравнение и функции гипергеометрического типа
- •6.3. Частные случаи гипергеометрической функции: цилиндрические функции Бесселя
- •6.4. Частные случаи гипергеометрической функции: ортогональные полиномы Лежандра
- •7. Функциональные и степенные ряды и их приложения к решению дифференциальных уравнений
- •7.1 Функциональные ряды. Сходимость и равномерная сходимость
- •7.2. Свойства равномерно сходящихся рядов. Признак равномерной сходимости
- •7.3. Степенные ряды. Интервал сходимости, радиус сходимости
- •7.4. Свойства степенных рядов
- •7.5. Арифметические операции и другие действия над степенными рядами
- •7.6. Разложение функций в степенные ряды
- •7.7. Обобщения степенных рядов – интегро – степенные ряды и ряды Вольтерра
- •8. Приближенно-аналитические методы решения дифференциальных уравнений
- •8.1. Необходимость асимптотических методов
- •8.2. Калибровочные функции. Символы порядка
- •8.3. Пример асимптотического разложения. Определение асимптотического ряда
- •8.4. Асимптотические последовательности и асимптотические разложения
- •8.5. Простейшие асимптотические методы решения дифференциальных уравнений
- •8.6. Метод Линдстедта – Пуанкаре
- •1. Ортогональные системы функций .И обобщенные ряды Фурье. Интегралы Фурье……………………………………..... 4
- •2. Преобразование Лапласа и его приложения…………….19
- •2.3. Импульсные функции и их приложение к решению дифференциальных уравнений …………….……….……..…... 38
- •3. Задачи механики и физики, приводящие к основным уравнениям математической физики ……………………......76
- •4. Решение одномерных уравнений математической физики. Задача Коши и краевые задачи ……...……………107
- •5. Метод Фурье для уравнений математической физики в двумерном и трехмерном пространствах .......…………….133
- •6. Элементы теории специальных функций.........................179
- •8. Приближенно-аналитические методы решения дифференциальных уравнений ….........................................221
- •9. Список литературы………………………………………..247
- •394026 Воронеж, Московский просп., 14
Ответы к индивидуальным заданиям
1. a) да; б) да; в) нет; г) да; д) да; е) нет; ж) нет; з) да;
и) нет; к) да; л) да; м) да.
2.
.
3.
.
4.
.
5.
.
6. Нет. 7.
.
8.
.
9.
.
10.
.
11.
.
12. а)
;
б)
.
13.
.
14.
.
15.
.
16.
.
17.
.
18.
.
19.
.
20.
.
21.
.
22.
.
23.
.
24.
.
25.
.
26.
.
27.
.
28.
.
29.
.
30.
.
31.
.
32.
.
33.
.
34. а)
;
б)
.
35.
.
36.
.
37.
.
38.
.
39.
.
40.
.
41.
.
42.
.
43.
.
44.
.
45.
.
46.
.
47.
.
48.
.
49.
.
50.
.
51.
.
52.
.
53.
.
54.
.
55.
.
56.
.
58.
.
59.
.
60.
.
61.
.
62.
.
63.
.
64.
.
65.
.
66.
.
67.
.
68.
.
69.
.
70.
.
71.
.
72.
.
73.
.
74.
.
75.
.
76.
.
77.
.
78.
.
79.
.
80.
.
81.
.
82.
.
83.
.
84.
.
85.
.
86.
.
87.
88.
.
89.
.
90.
.
91.
.
92.
.
93.
.
94.
.
95.
.
96.
.
97.
.
98.
.
99.
.
100.
.
101.
.
102.
.
103.
.
104.
.
105.
.
106.
.
107.
.
108.
.
109.
.
110.
.
111.
.
112.
.
113.
.
114.
.
115.
.
116.
.
117.
.
118.
.
119.
.
120.
.
121.
.
122.
.
123.
.
124.
.
125.
.
126.
.
127.
.
128.
.
129.
.
130.
.
131.
.
132.
.
133.
.
134.
.
135.
.
136.
.
137.
.
138.
.
139.
.
140.
.
141.
.
142.
.
143.
.
144.
.
145.
.
146.
.
147.
.
148.
.
149.
.
150.
.
151.
.
152.
.
153.
.
154.
.
155.
.
156.
.
157.
.
158.
.
159.
.
160.
161.
162.
.
163
164.
.
165.
166.
.
167.
.
168.
.
169.
.
170.
.
171.
.
172.
,
.
173.
,
,
.
174.
.
175.
176.
,
.
177.
.
178.
.
Задачи механики и физики, приводящие к основным уравнениям математической физики
3.1. Понятие уравнения в частных производных и его решения. Основные уравнения математической физики. Уравнения современной математической физики
Уравнение, связывающее неизвестную
функцию
,
независимые переменные
и частные производные от функции
называется дифференциальным уравнением
с частными производными
(3.1)
где
-
заданная функция своих аргументов.
Порядок старшей производной, входящей в уравнение (3.1), называется порядком уравнения с частными производными.
Уравнение с частными производными называется квазилинейным, если оно линейно относительно всех старших производных от неизвестной функции. Например, уравнение
является квазилинейным уравнением
второго порядка,
-
заданные функции.
Уравнение с частными производными называется линейным, если оно линейно и относительно неизвестной функции, и относительно ее частных производных. Примером линейного уравнения второго порядка является уравнение
где
- заданные функции,
-
неизвестная функция.
Решением уравнения с частными
производными (3.1) называется всякая
функция
,
которая, будучи подставлена в уравнение
вместо неизвестной функции и ее частных
производных, обращаем это уравнение в
тождество по независимым переменным.
Например, уравнение
имеет решение
,
где
- любая дифференцируемая функция.
Упражнение. Проверьте последнее
утверждение. Покажите также, что любая
дифференцируемая функция
является решением уравнения
.
Многие задачи математики, физики, различных областей техники приводят к исследованию дифференциальных уравнений с частными производными второго порядка. Удивительно то, что весьма многие задачи из разных отраслей знания приводят к одним и тем же уравнениям.
Из всех известных уравнений с частными производными, наиболее часто встречающимися при описании различных физических явлений и наиболее хорошо изученными математиками, являются уравнения, названные основными уравнениями математической физики.
Математическая физика – это область феноменологической физики, работающей с идеей непрерывных сред, в противоположность атомистической физики, выдвинувшейся на передний план в начале 20-го века.
Перечислим основные уравнения математической физики.
Обозначим через
- пространственные декартовы координаты
точки, через
- время,
- заданную функцию,
-
заданную постоянную (имеющую в каждом
уравнении свой физический смысл),
-
неизвестную функцию,
- оператор Лапласа
Тогда основные уравнения математической физики записываются в следующем виде:
Уравнение Лапласа
.
Потенциалы поля тяготения и стационарного электрического поля (в котором отсутствуют массы и электрические заряды)
удовлетворяют этому уравнению. Оно описывает также потенциальное течение жидкости, потенциал стационарного тока и другие явления;
Уравнение Пуассона
описывает установившееся тепловое состояние однородного и изотропного твердого тела при наличии источников тепла, потенциал электрического поля при наличии зарядов и др.;
Уравнение теплопроводности
описывает процессы распространения тепла в однородном изотропном теле, а также явление диффузии газов;
Волновое уравнение
описывает распространение упругих, звуковых и электромагнитных волн, а также другие колебательные явления.
Кроме этих классических уравнений известны и другие замечательные уравнения, которые изучались уже в 20-ом столетии и которые имеют первостепенное значение и для науки, и для технических приложений. К таковым относятся:
Уравнение Шредингера
описывает движение субатомных частиц
в поле потенциала
,
где
- комплексная функция, квадрат модуля
которой определяет плотность вероятности
нахождения частицы в данный момент
времени в точке
Уравнение Синус - Гордона
описывает квантовые поля, самоиндуцированную прозрачность идеального диэлектрика, при взаимодействии его с электромагнитным полем на резонансных частотах, двумерные поверхности с постоянной отрицательной кривизной, описывает также солитоны – уединенные волны, ведущие себя подобно обычным частицам и т.д.;
Уравнение Кортевега - де Фриза
описывает уединенные волны на поверхности жидкости, плазменные волны, слабонелинейные магнитогидродинамические волны и другие процессы.
Уравнение Бюргерса
описывает турбулентное течение, звуковые волны в вязкой среде, магнитогидродинамические волны в среде с конечной электропроводимостью и другие явления.
Последние три уравнения являются нелинейными уравнениями с частными производными. Они служат продуктивной моделью для описания нелинейных эффектов при распространении волн и учитывают конкуренцию факторов нелинейности, диссипации и дисперсии.