Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekzamen_po_fiziologii_2020.pdf
Скачиваний:
264
Добавлен:
08.01.2022
Размер:
5.45 Mб
Скачать

Суммация – если выделяется небольшое количество медиатора и через некоторое время еще небольшая порция, то возможно формирование двух местных потенциалов, которые суммируются (временная суммация) или два, находящихся рядом синапса, выделяют подпороговое количество медиатора (возможна пространственная суммация)

Свойство облегчения проведения возбуждения – «свойство памяти» - синапс помнит проходившее через него возбуждение и быстрее проводит следующее возбуждение или наоборот замедляет и препятствует его прохождению в случае депрессии

Низкая лабильность – не может быстро переходить из состояния возбуждения в состояние торможения

Высокая утомляемость связана, например, с истощением запасов медиатора

Высокая чувствительность к химическим и лекарственным веществам обусловлена специфичностью хеморецепторов постсинаптической мембраны

Центральная нервная система

Проанализируйте физиологические функции нейрона, обеспечивающие его «интегративную деятельность» (П.К.Анохин, 1974)

Нейрон – основная структурная и функциональная единица центральной нервной системы. С позиции об анатомическом, функциональном и генетическом единстве нервной клетки нейрон с его отростками – дендритами и аксоном – является основной структурной единицей нервной системы.

Основной функцией нейронов является их 1.способность к возбуждению. Возбуждение может возникать как в результате синаптических влияний на нейрон других нервных клеток, так и за счет эндогенных цитоплазматических процессов. Внешним выражением возбуждения нейрона является колебание электрического потенциала на его мембране. В невозбужденном нейроне регистрируется мембранный потенциал, или потенциал покоя, около —70 мВ.

2.синтез БАВ

3.воспроизведение информации

4.хранение и интеграция информации в пресинаптических окончаниях.

5.в аксоне: аксонный транспорт, генерация электрических импульсов, выделение медиатора.

Интегративная деятельность нейрона:

П. К. Анохин предположил, что в теле нейрона происходят некоторые биохимические превращения, которые, как позже выяснилось, связаны с метаботропными рецепторами на поверхности нейрона. И биохимические процессы уходят вглубь цитоплазмы, включают в себя вторичные посредники, каскады вторичных мессенджеров, и участие ДНК (генетическая память нейрона). Таким образом, генерируемый нейроном паттерн импульсной активности не похож ни на один из паттернов возбуждений, которые поступали к нейрону в результате конвергенции.

наличие многочисленных специфических хеморецептивных участков на постсинаптических мембранах нейронов позволило сформулировать химическую теорию работы нервных клеток. Электрические импульсы, приходящие к синапсам нейрона через медиаторы, трансформируются в химические процессы на постсинаптической мембране, которые в свою очередь вовлекают в биохимические процессы цитоплазматические и ядерные структуры клетки. Внутриклеточные молекулярные преобразования приходящих к нейрону гетерогенных возбуждений обозначаются как

интегративная деятельность нервной клетки. В основе химической теории интегративной деятельности нейрона лежит утверждение о том, что метаболический процесс, развертывающийся в цитоплазме нейрона, закреплен генетически и является специфичным по отношению к отдельным постсинаптическим структурам.

Внутринейронная функциональная связь хеморецептивной части постсинаптической мембраны с цитоплазматическими процессами обеспечивается целой группой биологически активных веществ, выполняющих функции универсальных регуляторов клеточного метаболизма. К таким веществам относят циклические пуриновые нуклеотиды, простагландины, гормональные вещества, ионы металлов. Такие медиаторы, как норадреналин, адреналин, дофамин, серотонин, гистамин, специфически активируют мембраносвязанный фермент аденилатциклазу, которая катализирует синтез цАМФ из АТФ. Медиатор ацетилхолин активирует гуанилатциклазу — фермент, катализирующий образование цГМФ из гуанозинтрифосфата. Повышение активности гуанилатциклазы обеспечивается окисью азота (N0). В свою

очередь образование окиси азота из аргинина катализируется синтазой окиси азота, которая активируется Са2+, связанным с кальмодулином (регуляторный белок). Наличие кальция в нервной клетке имеет отношение к перераспределению ионов Na+ и К+ в клетке, синтезу и секреции медиаторов, синтезу белка и РНК, аксоплазматическому транспорту.

При синаптической активации постсинаптических мембран из них выделяются простагландины, которые изменяют энергетический метаболизм нейронов, участвуют в регуляции возбудимости клетки, секреции медиаторов и гормонов.

В молекулярных механизмах интегративной деятельности нейронов большая роль принадлежит эндогенным нейропептидам и так называемым мозгоспецифическим белкам. К эндогенным нейропептидам относятся: тиролиберин, холецистокинин, ангиотензин II, пролактин, вазопрессин. Они могут выступать не только в роли нейромедиаторов, но и в роли нейромодуляторов, т.е. оказывать влияние на высвобождение медиаторов из пресинаптических окончаний и постсинаптическую реакцию.

Рассмотрите важнейшие физиологические свойства нервных центров, обеспечивающие процессы адаптации к изменениям внешних условий или внутренней среды организма.

Нервный центр - совокупность нервных клеток выполняющих определенную функцию. Например, дыхательный нц, центр голода в гипоталамусе. В узком смысле слова – представлен группой нейронов, без участия которых функция будет неосуществима, в широком – включает участки НС, которые могут быть далеко от основной группы нейронов.

Свойства нервных центров:

исходящие из свойств синапсов

одностороннее проведение возбуждения

центральная задержка (сумма синаптических задержек)

суммация (пространственная и временная)

низкая лабильность

трансформация ритма раздражителя - центры способны как снижать, так и повышать ритмы возбуждений, поступающих от рецепторов.

высокая утомляемость

высокая чувствительность к химическим веществам

свойство облегчения, долговременной потенциации, пластичности

тонус нервных центров (некоторое базальное возбуждение, которым отличаются нервные клети в составе НЦ) зависит от гуморальныхи афферентных влияний

доминанта (обнаружил Ухтомский) – тот нервный центр, тонус которого наиболее высоко притягивает к себе другие возбуждения от других нервных центров. Например, если имеется жажда и голод, то жажда будет доминировать и наличие голода будет усиливать жажду.

реципрокность – активность одного центра подавляет активность другого. Центр сгибателей и центр разгибателей.

исходящие из характера межнейрональных связей

oконвергенция - ряда возбуждений к одному нейрону. Бывает мультисенсорная (свет и звук), сенсорно-биологическая (свет и голод), мультибиологическая (голод и боль)

o дивергенция – от одного нейрона возбуждение распространяется на несколько нейронов o иррациация – распространение возбуждения от одного участка НЦ ко многим.

o мультипликация – к нейрону В не одновременно придут потенциалы, потому что будет прибавляться синаптическая задержка, а пути имеют разную длину. Следовательно к нейрону В придут 3 потенциала (умножение возбуждения)

oреверберация (есть теория, что так может осуществляться коротко временная память)

o Принцип окклюзии –

Дайте современное объяснение структуры связей нейронов и мембранных процессов, лежащих в основе известных видов центрального торможения. Объясните результаты опытов И.М.Сеченова (центральное торможение) и Гольца (сопряженное торможение) с современных позиций

Торможение – локальный активный процесс, который является следствием взаимодействия нескольких возбуждений.

Классификация по локализации (пресенаптическое и постсинаптическое) и по механизму торможения ( торможение, связанное с процессом гиперполяризации; пессимальное торможение, связанное с высокой частотой импульсации; торможение, связанное со стойкой деполяризацией – рефрактреным состоянием).

Клеточные виды торможения: возвратное торможение (физиологическая роль – препятствование перевозбуждению нейрона), латеральное (физиологическая роль – встречается в рецепторных полях и помогает различать/разделять/дискриминировать различные раздражители), реципрокное торможение – при возбуждении НЦ происходит реципрокное (сопряженное) торможение центра, отвечающего за противоположную функцию.

Сеченовское торможение. Наличие процесса торможения в ЦНС впервые было показано Сеченовым в 1862 г. в экспериментах на лягушке. Выполняли разрез головного мозга лягушки на уровне зрительных бугров и измеряли время рефлекса отдергивания задней лапы при погружении ее в раствор серной кислоты (рефлекс Тюрка). При наложении на разрез зрительных бугров кристаллика поваренной соли время рефлекса увеличивалось. Прекращение воздействия соли на зрительные бугры приводило к восстановлению исходного времени рефлекторной реакции. Рефлекс отдергивания лапки обусловлен возбуждением спинальных центров. Кристаллик соли, раздражая зрительные бугры, вызывает возбуждение, которое распространяется к спинальным центрам и тормозит их деятельность. И.М. Сеченов пришел к выводу, что торможение является следствием взаимодействия двух и более возбуждений на нейронах ЦНС. В этом случае одно возбуждение неизбежно становится тормозимым, а другое — тормозящим. Подавление одним возбуждением другого происходит как на уровне постсинаптических мембран (постсинаптическое торможение), так и за счет уменьшения эффективности действия возбуждающих синапсов на пресинаптическом уровне (пресинаптическое торможение).

Пресинаптическое торможение. Пресинаптическое торможение развивается в пресинаптической части синапса за счет воздействия на его мембрану аксо-аксональных синапсов. В результате как деполяризующего, так и гиперполяризующего воздействия происходит блокирование проведения импульсов возбуждения по пресинаптическим путям к постсинаптической нервной клетке.

Постсинаптическое торможение. Наибольшее распространение в ЦНС имеет механизм постсинаптического торможения, которое осуществляется специальными тормозными вставочными нервными клетками (например, клетки Реншоу в спинном мозге или клетки Пуркинье (грушевидные нейроны) в коре мозжечка). Особенность тормозных нервных клеток состоит в том, что в их синапсах имеются медиаторы, вызывающие на постсинаптической мембране нейрона ТПСП (тормозящие постсинаптические потенциалы), т.е. кратковременную гиперполяризацию. Например, для мотонейронов спинного мозга гиперполяризующим медиатором является аминокислота глицин, а для многих нейронов коры большого мозга таким медиатором служит гамма-аминомасляная кислота — ГАМК. Частным случаем постсинаптического является возвратное торможение.

Реципрокное торможение. Механизм постсинаптического торможения лежит в основе таких видов торможения, как реципрокное и латеральное. Реципрокное торможение является одним из физиологических механизмов координации деятельности нервных центров. Так, попеременно реципрокно тормозятся в продолговатом мозге центры вдоха и выдоха, прессорный и депрессорный сосудодвигательные центры. Реципрокное торможение проявляется на уровне спинного мозга при осуществлении строго

координированных двигательных актов (ходьба, бег, чесание). На уровне сегментов спинного мозга возбуждение группы мотонейронов, вызывающих сокращение мышц-сгибателей, сопровождается реципрокным торможением другой группы мотонейронов, приводящих к расслаблению мышц-разгибателей. Латеральное торможение. Активность нейронов или рецепторов, расположенных рядом с возбужденными нейронами или рецепторами, прекращается. Механизм латерального торможения обеспечивает дискриминаторную способность анализаторов. Так, в слуховом анализаторе латеральное торможение обеспечивает различение частоты звуков, в зрительном анализаторе латеральное торможение резко увеличивает контрастность контуров воспринимаемого изображения, а в тактильном анализаторе способствует дифференцировке двух точек прикосновения.

При поступлении возбуждений к синапсам нервной клетки на постсинаптических мембранах могут возникать процессы гиперполяризации. Гиперполяризация приводит к возрастанию критического уровня деполяризации мембраны, следовательно, затрудняет возникновение возбуждения. Такие постсинаптические потенциалы получили название «тормозящие постсинаптические потенциалы» (ТПСП); они возникают в синапсах, где медиатор вызывает гиперполяризацию постсинаптической мембраны.

Каждый нейрон синтезирует в своем теле и затем выделяет во всех своих синапсах один и тот же медиатор, поэтому нейроны и ацетилхолиновой передачей возбуждения называются холинергическими, с адреналиновой – адренергическими. К гиперполяризующим медиаторам относят ГАМК глицин. Эти медиаторы взаимодействуя с хеморецепторами постсинаптической мембраны, приводят к развитию ТПСП.

Поступательное торможение обусловлено тем, что на пути следования возбуждения встречается тормозной нейрон.

Возвратное торможение осуществляется вставочными тормозными клетками (клетками Реншоу). Аксоны мотонейронов часто дают коллатерали (ответвления), оканчивающиеся на клетках Реншоу. Аксоны клеток Реншоу оканчиваются на теле или дендритах этого мотонейрона, образуя тормозные синапсы. Возбуждение, возникающее в мотонейроне, распространяется по прямому пути к скелетной мускулатуре, а также по коллатералям к тормозящему нейрону, которые посылают импульсы к мотонейронам и тормозят их. Чем сильнее возбуждение мотонейрона, тем сильнее возбуждаются клетки Реншоу и тем более интенсвно они оказывают свое тормозящее действие, что предохраняет нервные клетки от перевозбуждения.

Реципрокное (сопряженное) торможение. Это явление, открытое Ч. Шеррингтоном, обеспечивает согласованную работу мышц-антагонистов, например, сгибателей и разгибателей конечностей, т.е. движение конечностей. При сгибании ног в коленном суставе, развивается возбуждение в спинномозговом центре мышц-сгибателей и одновременно развивается торможение в нервном центре мышц-разгибателей. Реципрокное торможение осуществляется при участии тормозящих вставочных нейронов спинного мозга.

Ретикулярное торможение при раздражении ретикулярной формации кошка сгибает лапку.

Охарактеризуйте основные методы исследования ЦНС (электроэнцефалография, импульсная активность нейронов), объясните их использование для оценки функционального состояния человека (бодрствование, сон, мотивации, эмоции).

Методы исследования функций ЦНС делятся на две группы: 1) непосредственное изучение и 2) опосредованное (косвенное) изучение.

Методы непосредственного изучения функций ЦНС подразделяют на морфологические и функциональные. Морфологические методы. К морфологическим методам относятся макроанатомическое и микроскопическое исследования строения мозга. Этот принцип лежит в основе метода генетического картирования мозга, позволяющего выявлять функции генов в метаболизме нейронов. К морфологическим методам относят и метод меченых атомов. Сущность его заключается в том, что вводимые в организм радиоактивные вещества интенсивнее проникают в те нервные клетки мозга, которые в данный момент наиболее функционально активны.

Функциональные методы: разрушение и раздражение структур ЦНС, стереотаксический метод, электрофизиологические методы.

Метод разрушения. Разрушение структур мозга является довольно грубым методом исследования, поскольку повреждаются обширные участки мозговой ткани. Так, повреждение в области продолговатого мозга приводит к нарушению дыхания, глотания, деятельности сердца и изменению тонуса сосудов. В клинике для диагностики повреждений мозга различного происхождения (опухоли, инсульт и др.) у человека

используют методы компьютерной рентгенотомографии,

эхоэнцефалографии, ядерного магнитного

резонанса.

 

Метод раздражения структур мозга позволяет установить пути распространения возбуждения от места раздражения к органу или ткани, функция которых при этом изменяется. В качестве раздражающего фактора чаще всего применяют электрический ток. В эксперименте на животных применяют метод самораздражения

различных участков мозга: животное получает возможность посылать раздражение в мозг, замыкая цепь электрического тока и прекращать раздражение, размыкая цепь.

Стереотаксический метод введения электродов.

Стереотаксические атласы, которые имеют три координатных значения для всех структур мозга, помещенного в пространство трех взаимно перпендикулярных плоскостей — горизонтальной, сагиттальной и фронтальной. Данный метод позволяет не только с высокой точностью вводить электроды в мозг с экспериментальной и диагностической целями, но и направленно воздействовать на отдельные структуры ультразвуком, лазерными или рентгеновскими лучами с лечебной целью, а также проводить нейрохирургические операции. Электрофизиологические методы исследования ЦНС включают анализ как пассивных, так и активных электрических свойств мозга.

Электроэнцефалография. Метод регистрации суммарной электрической активности мозга называется электроэнцефалографией, а кривая изменений биопотенциалов мозга — электроэнцефалограммой (ЭЭГ). ЭЭГ регистрируют с помощью электродов, располагаемых на поверхности головы человека. Используют два способа регистрации биопотенциалов: биполярный и монополярный. При биполярном способе регистрируют разность электрических потенциалов между двумя близко расположенными точками на поверхности головы. При монополярном способе регистрируют разность электрических потенциалов между любой точкой на поверхности головы и индифферентной точкой на голове, собственный потенциал которой близок к нулю. Такими точками являются мочки уха, кончик носа, а также поверхность щек. Основными показателями, характеризующими ЭЭГ, являются частота и амплитуда колебаний биопотенциалов, а также фаза и форма колебаний. По частоте и амплитуде колебаний различают несколько видов ритмов в ЭЭГ.

Бета 13-30 Гц, амплитуда 14-40 мкВ, эмоциональное возбуждение, умственная и физическая деятельность, при нанесении раздражения.

Альфа 8-13 Гц, амплитуда до 100 мкВ состояние умственного и физического покоя, с закрытыми глазами. Тета 4-8 Гц, амплитуда от 40 до 300 мкВ, промежуточная фаза сна, эмоциональное напряжение.

Дельта 1 – 4 Гц, амплитуда до 300 мкВ, глубокий сон, наркоз, гипоксия.

Основным и наиболее характерным ритмом является альфа-ритм. В состоянии относительного покоя альфаритм наиболее выражен в затылочных, затылочно-височных и затылочно-теменных областях головного мозга. При кратковременном действии раздражителей, например света или звука, появляется бета-ритм. Бета- и гамма-ритмы отражают активированное состояние структур головного мозга, тета-ритм чаще связан с эмоциональным состоянием организма. Дельта-ритм указывает на снижение функционального уровня коры большого мозга, связанное, например, с состоянием легкого сна или утомлением. Локальное появление дельта-ритма в какой-либо области коры мозга указывает на наличие в ней патологического очага.

Исследование импульсной активности нейронов с помощью микроэлектродной техники.

Электроды для регистрации клеточной активности часто изготавливаются из металла . В ходе операции под наркозом электроды вживляются в исследуемые структуры мозга и фиксируются к черепу животного. При регистрации импульсной активности животное осуществляет целенаправленное поведение . Анализ активности нервных клеток позволяет выявить особенности импульсации, характерной для того или иного поведения или состояния животного.

Исследование импульсной активности нейронов при микроионофорезе к нейронам биологически активных веществ.

Микроионофорез БАВ используется для изучения химической чувствительности мембран нервных клеток головного мозга. Регистрация осуществляется через центральный канал многоствольного стеклянного микроэлектрода. Биологически активные вещества в заряженном состоянии выводятся из боковых каналов электродов положительным или отрицательным током. Животное при этом может находится в свободном состоянии и осуществлять целенаправленное поведение.

Объясните характер взаимодействия нейронов сегментов спинного мозга и проприорецепторов опорнодвигательного аппарата в механизмах поддержания мышечного тонуса

Интегративная деятельность спинного мозга связана со структурной организацией его сегментов. Каждый сегмент спинного мозга получает афферентную импульсацию через задние (чувствительные) корешки и посылает возбуждение к эффекторам через передние (двигательные) корешки. Таким образом, уже в пределах каждого сегмента спинного мозга возможна интеграция простейших двигательных реакций.

Миотатический рефлекс — одна из простых реакций на растяжение мышцы, осуществляемая на уровне спинного мозга по самому короткому пути — от проприорецепторов до мотонейронов и далее к двигательным мышечным волокнам.

Реакция растяжения является основой регуляции длины мышцы, изменение которой возникает при поднятии груза или при сокращении мышцы-антагониста.

Скелетные мышцы всегда находятся в состоянии некоторого напряжения. Постоянное незначительное напряжение мышц, не сопровождающееся признаками утомления, называется мышечным тонусом. Односторонняя перерезка у спинальной лягушки, подвешенной на крючке штатива, чувствительных (задних) корешков спинного мозга, в которых проходят афферентные нервные волокна, иннервирующие соответствующую заднюю лапку, приводит к исчезновению мышечного тонуса этой лапки и она распрямляется. К аналогичному эффекту приводит перерезка передних (двигательных) корешков или разрушение спинного мозга. Эти опыты свидетельствуют о том, что при разрушении основных звеньев рефлекторного кольца (афферентных и эфферентных путей, нервных центров) мышечный тонус исчезает. Следовательно, мышечный тонус имеет рефлекторную природу.

Источником возбуждений, поддерживающих мышечный тонус, являются проприорецепторы. В скелетных мышцах имеются три вида проприорецепторов:

мышечные веретена, расположенные среди мышечных волокон;

сухожильные рецепторы Гольджи, расположенные в сухожилиях;

суставные рецепторы -- пачиниевы тельца, расположенные в фасциях, сухожилиях, связках.

Особое значение в регуляции мышечного тонуса имеют мышечные веретена и сухожильные рецепторы Гольджи.

Мышечные веретена представляют собой небольшие продолговатые образования, напоминающие своим внешним видом прядильные капсулы. Внутри мышечного веретена находится пучок мышечных волокон, которые называются интрафузальными, т. к. они расположены внутри веретена в отличие от обычных мышечных волокон, которые называются экстрафузальными.

Каждое интрафузальное волокно состоит из трех частей:

• его центральная часть называется ядерной сумкой, в которой находятся ядра мышечной клетки;

• два периферических участка, которые имеют поперечную исчерченность и обладают способностью сокращаться;

• миотрубки, расположенные между ядерной сумкой и периферическими участками.

Ядерную сумку в виде спирали окружают нервные волокна чувствительного нейрона-первичные рецепторные окончания. В области миотрубок нервные окончания афферентных нейронов гроздевидно ветвятся, образуя вторичные рецепторные окончания.

В мышце мышечное веретено одним концом прикрепляется к экстрафузальному мышечному волокну, а другим - к сухожилию этого волокна. Таким образом, мышечное веретено расположено в мышце параллельно экстрафузальным мышечным волокнам.

При снижении тонуса экстрафузального волокна увеличивается его длина, что приводит к растяжению и раздражению первичных и вторичных рецепторных окончаний, для которых растяжение является адекватным раздражителем.

Возбуждение от рецепторных окончаний по афферентным волокнам поступает в спинной мозг к мотонейронам, расположенным в передних рогах. Мотонейроны спинного мозга принято подразделять на альфа- и гамма-мотонейроны (так как их аксоны относятся к А-альфа и А-гамма нервным волокнам). Возбуждение от альфа-мотонейронов поступает к экстрафузальным мышечным волокнам, вызывая их сокращение - тонус восстанавливается. Избыточное сокращение экстрафузальных мышечных волокон приводит к растяжению сухожильных рецепторов Гольджи, так как они прикрепляются к мышце последовательно. В них возникает возбуждение, которое поступает по чувствительному нейрону к тормозным вставочным нейронам спинного мозга (клеткам Рэншоу, в аксоне которых происходит выделение тормозного медиатора – глицина), далее от них к альфа-мотонейронам. Активность альфа-мотонейронов при этом снижается, уменьшается импульсация, идущая от них к экстрафузальным мышечным волокнам, тонус несколько снижается.

Рассмотренные выше механизмы поддержания мышечного тонуса осуществляются на уровне спинного мозга, поэтому такой тонус называется спинальным или простейшим. Спинальный тонус характеризуется очень

Соседние файлы в предмете Нормальная физиология