Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
51
Добавлен:
09.02.2015
Размер:
970.75 Кб
Скачать

1. Введение в математический анализ. Числовая последовательность.

Числовая последовательность – Функция вида , заданная на множествеN натуральных чисел. Обозначается в виде {xn}, . Число x1 называется первым членом (элементом) последовательности, xn – общим или n-м членом последовательности.

Задается либо формулой общего члена, либо рекуррентной формулой.

Формула общего члена позволяет вычислить любой член последовательности по номеру n (при помощи этой формулы можно сразу вычислить любой член последовательности).

Пример:

Рекуррентная формула определяет правило, по которому можно найти n-ый член последовательности, зная первый и (n-1)-ый члены (при таком способе для нахождения 100-го члена последовательности придётся сначала посчитать 99 предыдущих).

2. Ограниченные и неограниченные последовательности.

Числовая последовательность – Функция вида , заданная на множествеN натуральных чисел. Обозначается в виде {xn}, . Число x1 называется первым членом (элементом) последовательности, xn – общим или n-м членом последовательности.

Последовательность {xn} называется ограниченной, если существует такое число , что для любого выполняется неравенство . (если, то последовательность -неограниченная).

3. Монотонные последовательности.

Числовая последовательность – Функция вида , заданная на множествеN натуральных чисел. Обозначается в виде {xn}, . Число x1 называется первым членом (элементом) последовательности, xn – общим или n-м членом последовательности.

Последовательность {xn} называется возрастающей, если для любого выполняется неравенство . (если, то последовательность -убывающая). Если все элементы последовательности {xn} равны одному и тому же числу с, то ее называют постоянной.

Возрастающие, убывающие и постоянные последовательности – монотонные.

4. Число е.

Теорема Вейерштрасса. Всякая монотонная ограниченная последовательность имеет предел.

Рассмотрим последовательность .

По формуле бинома Ньютона:

Пусть , тогда:

- возрастающая последовательность, причём . Заменим в правой части скобки на 1, а факториалы на степени двойки. По формуле суммы членов прогрессии найдём, что:

Последовательность ограничена, при этом для выполняется неравенство:, следовательно на основаниитеоремы Вейерштрасса последовательность имеет предел, обозначаемей буквой е.

.

Число е называется неперовым числом. Число е иррациональное, его приближенное значение равно 2,72 (е = 2,718281828459045…). Число е принято за основание натуральных логарифмов ()

5. Связь натурального и десятичного логарифмов.

За основание натуральных логарифмов принято число е, десятичных – 10. (,)

По определению логарифма имеем . Прологарифмируем по основанию 10.

Пользуясь десятичными логарифмами, находим , значит, либо

6. Предел функции в точке.

Определение 1 (на “языке последовательностей”, или по Гейне). Пусть функция определена в некоторой окрестности точки, кроме, быть может, самой точки. Число А называется пределом функциив точке(или при), если для любой последовательности допустимых значений аргумента, сходящихся к числу(т.е.), последовательность соответствующих значений, сходится к числу А (т.е.).

Определение 2 (на “языке ”, или по Коши). Пусть функция определена в некоторой окрестности точки, кроме, быть может, самой точки. Число А называется пределом функциив точке(или при), если для любого положительногонайдётся такое положительное число, что при всехx, удовлетворяющих неравенству , выполнится неравенство.

Соседние файлы в папке 8b0e60bd_otvety-matan-ryabcev