Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекция 11.docx
Скачиваний:
1
Добавлен:
04.07.2021
Размер:
130.38 Кб
Скачать

Интерференция света в тонких пленках.

В природе мы неоднократно наблюдали радужную окра­ску мыльных пузырей, тонких пленок нефти и масла на поверх­ности воды и оксидных пленок на поверхности металлов. Эти явления обусловлены интерференцией света в тонких пленках, возникающей при наложении когерентных световых волн, отра­женных от верхней и нижней поверхностей пленки.

Эти явления обусловлены интерференцией света в тонких пленках, возникающей при наложении когерентных световых волн, отра­женных от верхней и нижней поверхностей пленки.

Рис.3.2.3.1. Интерференция в тонкой пленке.

Пусть на плоскопараллельную прозрачную пластину с показателем преломления n и толщиной d под углом i падает плоская монохроматическая волна (рис. 3.2.3.). Рассмотрим луч, который, коснувшись поверхности в точке О, разделится на два когерентных луча: отраженный от верхней поверхности пленки 1’ и преломленный 1’’. Луч 1’’ пройдет пленку, частично отра­зится от нижней ее поверхности в точке С, дойдет до точки В и, преломившись, выйдет из пленки. Проведем прямую АВ, перпендику­лярную лучам 1’ и 1’’. Путь, который оба луча пройдут от этой прямой до экрана, будет оди­наковым, поверхность АВ является волновой поверхностью. От точки О до АВ путь, пройденный лучами, будет раз­личным. Найдем эту разность хода лучей Δr. С учетом показателя преломления пластинки n: Δr = (OC+CB)·n–OA, или, как дает математический расчет: .

Известно, что в процессе отражения от оптически более плотной среды, световой луч теряет поло­вину длины волны λ/2. Если пластинка находится в воздухе, то λ/2 теряет луч 1’ в точке О и выражение для разности хода при­обретает вид: .

Разберем несколько различных вариантов интерференции света в тонких пленках. 1. Полосы равного наклона. Пусть на плоскопараллель­ную пластинку толщиной d = const падает расходящийся пучок монохроматических лучей (т.е. пучок, в котором представлены всевозможные углы падения i ≠ const) (рис. 3.2.3.2.).

Рис.3.2.3.2 .Полосы равного наклона.

Выделим из всего множества лучей луч 1 с углом падения i1, который в результате отра­жения и преломле­ния образует лучи 1’и 1’’, и луч 2 с уг¬лом падения i2,ко¬торый также частично проходит через границу раздела и частично отражается.

Так как пластинка плоскопа­раллельная, лучи 1’ и 1’’ будут параллельны и в бесконечности образуют интерференционную картину.

Если параллельно пластинке расположить линзу Л, а в ее фокальной плоскости поместить экран Э, то интерференционную картину мы будем наблюдать на экране. Лучи 1’ и 1’’ встретятся на эк­ране в точке М1, а лучи исходящие из луча 2 – в точке М2. Необходимо заметить, что в точке М1 встретятся и будут ­интерферировать все лучи, падаю­щие под углом i1. Однако, если рассмотреть луч 3 с тем же уг­лом падения i1, но иначе ориентированный по отношению к пла­стинке (см. рис. 3.2.3.2.), то интерференция подобных ему лучей бу­дет наблюдаться в другой точке экрана М3, находящейся на та­ком же расстоянии от центра экрана, что и точка М1. Таким об­разом, лучи с углом падения i1, но с разными ориентациями, об­разуют на экране кольцо, освещенность будет зависеть от разно­сти хода лучей. Лучи с углом падения i2 и всевозможных ориен­таций образуют на экране кольцо с тем же центром, но другого радиуса. В итоге на экране получится интерференционная кар­тина, состоящая из концентрических светлых и темных колец, каждое из которых соответствует строго определенному углу наклона (углу падения) лучей. Поэтому данная интерференци­онная картина получила название полос равного наклона. Если линза и экран не параллельны пластине, то полосы равного на­клона будут иметь вид эллипсов.