Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Постникова ВН - ЛК весна 2021 / Полупроводниковые диоды.docx
Скачиваний:
55
Добавлен:
24.06.2021
Размер:
445.39 Кб
Скачать

Стабилитроны

Полупроводниковый стабилитрон – это полупроводниковый диод, напряжение на котором в области электрического пробоя слабо зависит от тока и который используется для стабилизации напряжения.

Это связано с тем, что небольшое увеличение напряжения на р-n переходе в режиме электрического пробоя вызывает более интенсивную генерацию носителей заряда и значительное увеличение обратного тока.

Рис. 5. Вольт-амперная характеристика стабилитрона и его условное графическое обозначение

Обратная ветвь в/а характеристики, показанной на рис.5, т.е. явление пробоя p-n перехода, можно использовать для целей стабилизации напряжения, пользуясь тем обстоятельством, что до тех пор пока пробой носит электрический характер (лавинный или туннельный) характеристика пробоя полностью обратима.

Как видно из характеристики, в области пробоя незначительные изменения обратного напряжения приводят к резким изменениям величины обратного тока.

Стабилитроны изготовляются из кремния. Это связано с тем, что в стабилитронах может быть использована только электрическая форма пробоя, которая является обратимой. Если пробой перейдет в необратимую тепловую форму, то прибор выйдет из строя. Поэтому величина обратного тока Iобр в стабилитронах ограничена допустимой мощностью рассеивания.

Т.к. ширина запрещенной зоны кремния больше, чем у германия, то для него электрическая форма пробоя перейдет в тепловую при больших значениях обратного тока - отсюда целесообразность выполнения стабилитронов из кремния. Степень легирования кремния, т.е. величина его удельного сопротивления, зависит от величины стабилизируемого напряжения, на которое изготовляется диод. Стабилитроны для стабилизации низких напряжений изготовляются из кремния с малым удельным сопротивлением (большая концентрация примеси); чем выше стабилизируемое напряжение, тем из более высокоомного материала выполняется диод. Изменение стабилизируемого напряжения от нескольких вольт до десятков вольт может быть достигнуто изменением удельного сопротивления кремния (изменением концентрации примеси).

Стабилитроны используют для стабилизации напряжений источников питания, а также для фиксации уровней напряжений в различных схемах.

Туннельные диоды. Туннельным диодом называют полупроводниковый прибор, сконструированный на основе вырожденного полупроводника (т. е. полупроводника с большим содержанием примеси), в котором при обратном и небольшом прямом напряжении возникает туннельный эффект и вольт-амперная характеристика имеет участок с отрицательным дифференциальным сопротивлением. Туннельный диод изготовляется из германия или арсенида галлия с очень большой концентрацией примесей, т.е. с очень малым удельным сопротивлением. Такие полупроводники с малым сопротивлением называют вырожденными. Это позволяет получить очень узкий р-n переход. В таких переходах возникают условия для относительно свободного туннельного прохождения электронов через потенциальный барьер (туннельный эффект). Туннельный эффект приводит к появлению на прямой ветви ВАХ (рис. 6) диода участка с отрицательным дифференциальным сопротивлением. Туннельный эффект состоит в том, что при достаточно малой высоте потенциального барьера возможно проникновение электронов через барьер без изменения их энергии.

Рис.6. Вольт-амперная характеристика туннельного диода

Устройство туннельных диодов в принципе почти не отличается от устройства других диодов, но для их изготовления применяют полупроводниковые материалы с большим содержанием примесей (до 1020см-3). Вследствие этого удельные сопротивления областей р- и n-типов очень малы, а ширина р-n перехода составляет примерно 0,02 мкм, что в сто раз меньше, чем в других полупроводниковых диодах. Напряженность электрического поля в таких р-n переходах достигает огромной величины — до 106 В/см.

Туннельные диоды обладают усилительными свойствами и могут работать в схемах как активные элементы. Они находят широкое применение в сверхбыстродействующих ЭВМ в качестве быстродействующих импульсных переключающих устройств (скорость переключения составляет доли наносекунды) и в генераторах высокочастотных колебаний. На туннельных диодах создают схемы мультивибраторов, триггеров, которые служат основой для построения логических схем, запоминающих устройств, регистров и т. д. Высокая скорость переключения объясняется тем, что туннельные диоды обычно работают на участке вольт-амперной характеристики с отрицательным дифференциальным сопротивлением, где механизм переноса зарядов связан с их туннельным смещением (через р-n-переход), скорость которого огромна. Туннельные диоды могут работать в широком диапазоне температур, они просты по конструкции и малогабаритны. Туннельные диоды изготовляют на основе сильнолегированного германия или арсенида галлия, p-n переход получают методом вплавления примесей.