Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

билеты

.pdf
Скачиваний:
284
Добавлен:
18.06.2021
Размер:
8.4 Mб
Скачать

За счет секреции осуществляется образование и выделение слюны, желудочного, поджелудочного и кишечного сока, желчи, пота, слез, молока, образование и выделение гормонов.

Регуля ция секреции осуществляется путем нервных или гуморальных влияний на секреторную клетку.

По способу выделения секрета железы делятся на следующие разновидности:

мерокриновые железы: секрет выделяется из клетки без нарушения ее целостности. К ним относятся большинство желез, например, слюнные железы;

апокриновые железы: апикальная часть клетки отторгается вместе с секретом. К апокриновым железам относятся молочные и потовые железы;

голокриновые железы: после накопления секрета клетка полностью разрушается и ее остатки включаются в состав секрета. К голокриновым железам относятся сальные железы кожи.

13.Функции нейрона (классификация, связь нейрона с др. клетками). Электрофизиологические явления. Интегративная функция нейрона и ее проявления (взаимоотношение возбуждения и торможения)

Проявления функциональных взаимоотношений нейронов с другими клетками.

1) Строение нейрона.

Нейрон – это структурно-функциональная единица нервной системы. Нейрон состоит из тела, дендритов, аксона. Место выхода аксона называется аксонным холмиком. Аксон может ветвиться, образуя коллатерали. Немиелинизированные (безмякотные) окончания аксонов являются пресинаптическими структурами.

2) Классификация нейронов.

а) По морфологическим признакам: униполярные, биполярные, мультиполярные.

б) По функции: чувствительные, вставочные, двигательные.

в) По характеру влияния на другие структуры: возбуждающие и тормозные.

3) Функции отдельных частейнейрона.

Дендриты – воспринимают информацию.

Аксон – проводит возбуждение от тела нейрона к другим клеткам.

Сома (тело) – здесь происходит основной синтез веществ, которые затем транспортируются в аксоны и дендриты. Т. е. сома выполняет трофическую функцию по отношению к отросткам.

4) Законы проведениявозбуждения по нервам.

а) Закон изолированного проведения. В нервном стволе возбуждение не передается с одного волокна на другое.

б) Закон двухстороннего проведения. При раздражении аксона возбуждение можно зарегистрировать выше и ниже места раздражения, а также в разветвлениях аксона.

в) Закон физиологической целостности. Любые воздействия, нарушающие обратимо и необратимо работу ионных каналов мембраны нерва, приводят к нарушению проведения возбуждения по нервам.

5) Взаимодействие нейрона с другими клетками.

Связь нейрона с другими клетками осуществляется посредством синапса. Различают электрические и химические синапсы.

Афферентная информация к нейрону может поступать:

1)от других нейронов через аксо-дендритический аксо-соматический, аксо-аксональный и дендро-дендритический синапсы.

2)от рецепторов – ими могут быть:

а) специализированные нервные окончания чувствительного нейрона;

б) рецепторная клетка, связанная с нейроном посредством синапса.

Эфферентную информацию нейрон направляет:

1)к другим нейронам;

2)к мышцам;

3)к секреторным клеткам.

Функции нейроглии:

1)опорная;

2)изолирующая;

3)обменная.

В результате связей нейронов с другими структурами образуются:

1)рефлекторные дуги;

2)нейронные сети.

II Электрофизиологические явления в нейроне.

1) Свойства мембраны элементовнейрона.

Мембрана тела нейрона состоит из липидов, белков, мукополисахаридов. Двойной липидный слой образует матрикс мембраны. Белки, встроенные в липидный матрикс, образуют каналы для воды и ионов (ионные насосы).

Мукополисахариды, расположенные на поверхности мембраны, осуществляют рецепторную функцию. Мембрана хорошо проницаема для жирорастворимых веществ. Крупные водорастворимые молекулы, в том числе и анионы органических кислот, практически не проходят через мембрану и покидают клетку путем экзоцитоза.

Мембрана нервного волокна имеет каналы для K, Na, Сl.

2) Потенциал покоя нейрона.

В различных частях нейрона и в различных нейронах ПП колеблется от 50 до 70 мВ. ПП обусловлен пассивным выходом калия из клетки и незначительным входом натрия в клетку. Ионные градиенты поддерживаются работой калий-натриевого насоса.

3) Потенциал действия нейрона.

Величина потенциала действия от 80 до 110 мВ. Длительность пика в нейронах теплокровных: 1 – 3 мс. Пик ПД сопровождается следовыми потенциалами: следовой депляризацией и следовой гиперполяризацией. Длительность следовых потенциалов неодинакова у различных нейронов

ПД возникает при деполяризации мембраны до критического уровня. Величина критического уровня деполяризации неодинакова в различных частях нейрона, поэтому и возбудимость частей нейрона неодинакова. Наиболее возбудим начальный сегмент аксона.

По аксону потенциал действия распространяется различными способами в зависимости от наличия миелиновой оболочки.

Вмякотных волокнах ПД распространяется скачкообразно (сальтаторно), возникая в перехватах Ранвье. Это обеспечивает высокую скорость проведения возбуждения.

Вбезмякотных волокнах ПД распространяется путем возникновения локальных токов, деполяризуя каждый участок мембраны последовательно. Это создает низкую скорость проведения возбуждения.

Возбудимость нейрона зависит:

1)от величины потенциала покоя;

2)от фазы возбуждения (смотри изменение возбудимости при возбуждении);

3) от активности возбуждающих и тормозных импульсов на нейроне;

14. Рефлекторный принцип деятельности ЦНС. Рефлекторная дуга. Рецептивное

поле рефлекса. Примеры рефлексов.

Основное положение рефлекторной теории заключается в утверждении, что деятельность организма есть закономерная рефлекторная реакция на стимул. Рефлекс реакция организма, возникающая на раздражение рецепторов и осуществляемая с участием центральной нервной системы.

В естественных условиях рефлекторная реакция происходит при пороговом, надпороговом раздражении входа рефлекторной дуги — рецептивного поля данного рефлекса. Рецептивным полем называется определенный участок воспринимающей чувствительной поверхности организма с расположенными здесь рецепторными клетками, раздражение которых инициирует, запускает рефлекторную реакцию. Рецептивные поля разных рефлексов имеют определенную локализацию, рецепторные клетки — соответствующую специализацию для оптимального восприятия адекватных раздражителей (например, фоторецепторы располагаются в сетчатке; волосковые слуховые рецепторы — в спиральном (кортиевом) органе; проприорецепторы — в мышцах, в сухожилиях, в суставных полостях

Структурной основой рефлекса является рефлекторная дуга — последовательно соединенная цепочка нервных клеток, обеспечивающая осуществление реакции, или ответа, на раздражение. Рефлекторная дуга состоит из афферентного, центрального и эфферентного звеньев, связанных между собой синаптическими соединениями. В зависимости от сложности структуры рефлекторной дуги различают моно- и полисинаптические рефлексы.

Еще одним звеном рефлекса является — петля обратной связи, установливающая связь между реализованным результатом рефлекторной реакции и нервным центром, выдающим исполнительные команды.

Классификации рефлексов.

Существуют различные классификации рефлексов:

По способу вызывания различают безусловные рефлексы (категория рефлекторных реакций, передаваемых по наследству) и условные рефлексы (рефлекторные реакции, приобретаемые на протяжении индивидуальной жизни организма).

Различают экстероцептивные рефлексы — рефлекторные реакции, инициируемые раздражением многочисленных экстерорецепторов (болевые, температурные, тактильные и т. д.), интероцептивные рефлексы (рефлекторные реакции, запускаемые раздражением интероцепторов: хемо-, баро-, осморецепторов и т. д.), проприоцептивные рефлексы (рефлекторные реакции, осуществляемые в ответ на раздражение проприорецепторов мышц, сухожилий, суставных поверхностей и т. д.).

В зависимости от уровня активации части мозга дифференцируют спинномозговые, бульбарные, мезенцефальные, диэнцефальные, кортикальные рефлекторные реакции.

По биологическому назначению рефлексы делят на пищевые, оборонительные, половые и т. д.

Классфикация Когана:

Элементарные безусловные рефлексы, представлены простыми рефлекторными реакциями, осуществляемыми на уровне отдельных сегментов спинного мозга. Они имеют местное значение, вызываются локальным раздражением рецепторов данного сегмента тела и проявляются в виде локальных сегментарных сокращений поперечнополосатой мускулатуры.

Роль: обеспечении простейших приспособительных реакций к внешним воздействиям местного значения, а также в приспособительных изменениях отдельных внутренних органов.

Координационные безусловные рефлексы согласованные акты локомоторной деятельности или комплексные реакции вегетативных функциональных объединений внутренних органов, вызываются раздражением определенных групп внешних или внутренних рецепторов, однако их эффект не ограничивается локальной реакцией путем последующей активации широкого класса экстеро-, интеро- и проприорецепторов, а формирует сложные координационные акты сокращения и расслабления, возбуждения или торможения деятельности ряда внутренних органов.

Интегративные безусловные рефлексы. Вызываются например пищевыми, болевыми раздражителями. Пример такой реакции — ориентировочная реакция. Биологическое значение которой заключается в перестройке организма, которая обеспечивает оптимальную подготовку к восприятию и быстрому анализу нового неизвестного сигнала в целях организации рационального ответа..

Сложнейшие безусловные рефлексы (инстинкты) представляют собой видовые стереотипы поведения, организующиеся на базе интегративных рефлексов по генетически заданной программе.

Сложные формы высшей нервной деятельности представлены психическими реакциями, в качестве вызывающих подобные реакции стимулов обычно выступают сложные комплексные раздражители. Часто такие рефлекторные реакции имеют усеченную рефлекторную дугу (отсутствует эфферентное звено рефлекторной дуги)

15.Особенности возникновения торможения в нейроне, классификация, механизмы пре- и постсинаптического торможения.

Торможение это не утомление и не перевозбуждение. Это самостоятельный процесс, вызываемый возбуждением и проявляющийся в подавлении другого возбуждения.

Торможение проявляется в форме локального процесса и поэтому всегда связано с наличием тормозных синапсов. Такие синапсы образуются аксонами специальных тормозных нейронов, угнетающих активность всех нервных клеток, с которыми они связаны.

Различают пресинаптическое и постсинаптическое торможение. Постсинаптическое подразделяется на прямое, возвратное и латеральное.

Характеристика торможения в ЦНС

Пресинаптическое торможение – это вид торможения развивается за счет процессов, приводящих к угнетению освобождению медиатора из пресинаптических окончаний и снижению эффективности синаптической передачи или полному ее прекращению. Пресинаптическое торможение обнаружено в мозговом стволе и, особенно в спинном мозге. Оно обусловлено наличием вставочных тормозных нейронов, к которым подходят коллатерали афферентных волокон. Аксон тормозного нейрона образует синапс на пресинаптических терминалах возбуждающей клетки (аксо-аксональный синапс).

Механизм пресинаптического торможения. В случае избыточного притока сенсорной информации с рецепторов происходит активация тормозных интернейронов. Тормозной синапс высвобождает ГАМК (гамма-аминомасленную кислоту), которая вызывает стойкую деполяризацию пресинаптической терминали. Это приводит к снижению амплитуды ПД, поступающего на пресинаптическую терминаль. Следствие этого – снижение квантовой секреции медиатора из нервных терминалей возбуждающего нейрона. При этом на мотонейроне регистрируется снижение амплитуды ВПСП, что снижает вероятность возникновения потенциала действия.

Постсинаптическое торможение осуществляется за счет процессов, происходящих на постсинаптической мембране.

Механизм постсинаптического торможения. В тормозном синапсе выделяются тормозные медиаторы (например – глицин), которые взаимодействуют с рецепторами постсинаптической мембраны. Это приводит к увеличению проницаемости для калия и хлора

и к гиперполяризации постсинаптической мембраны. При этом возбудимость нейрона снижается и снижается вероятность ответа на приходящий сигнал.

Воздействия на процесс торможения. Процесс торможения можно блокировать, воздействуя на различные этапы передачи в тормозном синапсе.

1)Столбнячный токсин нарушает высвобождение тормозных медиаторов (пресинаптический уровень воздействия).

2) Стрихнин конкурирует с тормозным медиатором за рецептор на постсинаптической мембране (постсинаптический уровень воздействия).

16. Нервный центр (нейронный ансамбль), особенности передачи информации в нервный центр (регуляция входа информации, трансформация ритма, усиление или ослабление сигналов, низкая лабильность, высокая утомляемость.)

Нервный центр это совокупность нейронов, расположенных в различных отделах ЦНС и объединенных выполнением одной функции.

Нейроны в нервном центре связаны синаптически и образуют нейронные сети. Процессы, происходящие в нейронных сетях, обеспечивают определенный уровень активности нервного центра путем:

1)регуляция входа информации;

2)трансформации ритма;

3)ослабления и усиления информации;

4)за счет процессов в нейронных сетях возникает низкая лабильность, быстрая утомляемость и высокая чувствительность к кислороду нервных центров.

Регуляция ввода информации осуществляется благодаря наличию нейронных сетей с конвергенцией и дивергенцией.

Конвергенция – это процесс схождения импульсов по многим афферентным путям на одном нейроне. Так, на мотонейроне сходятся сигналы от афферентных волокон, от различных нисходящих трактов, сходятся аксоны от возбуждающих и тормозных нейронов. Благодаря конвергенции на нейроне происходят процессы пространственной суммации.

Механизм пространственной суммации. На нейроне суммируются ВПСП и ТПСП, возникающие в различных синапсах. Если преобладает активность возбуждающих синапсов и суммарная величина ВПСП будет достаточной для возникновения ПД, то нейрон будет в возбужденном состоянии.

Временная суммация. Этот процесс не связан с конвергенцией и заключается в суммировании ВПСП и ТПСП, возникающих в одном синапсе. Поэтому частые, но слабые сигналы, суммируясь, могут вызывать рефлекторный ответ или наоборот, затормозить его.

Роль конвергенции в деятельности нервного центра. Благодаря тому, что некоторые нейроны могут оказаться общими для различных рефлекторных дуг возникает явление окклюзии. Суть явления заключается в том, что рефлекторный ответ, возникающий при одновременном раздражении двух рецептивных полей оказывается меньше суммы рефлекторных ответов при раздельном раздражении этих же рецептивных полей.

Благодаря конвергенции возникает, и облегчение рефлекторной деятельности при одновременном раздражении различных рецептивных полей.

Вследствие конвергенции возбуждающих и тормозных путей на нейронах нервного центра рефлекторный ответ может быть заторможен при активации другого рецептивного

поля.Дивергенция – это способность нейрона устанавливать, многочисленные связи с другими нейронами.

Благодаря процессу дивергенции одна и та же информация может поступать в различные нервные центры, что обеспечивает иррадиацию возбуждения и торможения в ЦНС. В нормальных условиях иррадиации возбуждения препятствует деятельность тормозных нейронов.

Трансформация ритма заключается в том, что информация, выходящая из нервного центра отличается по частоте и ритму от приходящей к нему афферентной информации. Возможно как учащение, так и урежение импульсации.

Ослабление сигналов. Такое явление может происходить при длительной работе нервного центра. В его синапсах развивается синаптическая депрессия. Проявляется в снижении

постсинаптических потенциалов и связана со стойкой деполяризацией постсинаптической мембраны при длительной работе синапса. Возможно это нейронный коррелят привыкания нервных центров.

Усиление сигналов осуществляется двумя путями:

1)путем посттетанической потенциации. Ответ на слабый сигнал усиливается, если этот сигнал поступает после предварительного ритмического раздражения. Механизм этого явления заключается в том, что ритмическое раздражение привело к накоплению ионов кальция в пресинаптическом окончании.

2)второй механизм, усиливающий поступающий сигнал – реверберация.

Реверберация – это циркуляция импульсов по замкнутым нейронным сетям. На этом механизме основана кратковременная память, обучение.

Низкая лабильность нервных центров.

Лабильность – максимальное количество импульсов, которое ткань может генерировать в единицу времени синхронно с раздражением. Чувствительные нервы до 1000 имп./сек., двигательные нервы до сотни импульсов. Таким образом, нервный центр имеют самый низкую лабильность. Связано это с функциональными возможностями центральных синапсов. Утомляемость нервных центров проявляется в постепенном снижении и прекращении рефлекторного ответа при продолжительном раздражении афферентных центров. Нервные центры имеют самую высокую утомляемость.

Механизм легкой утомляемости нервных центров связан с синаптическими процессами: снижением количества легко доступного медиатора, снижением чувствительности постсинаптической мембраны к медиатору, снижением активности энзимов синапса.

Нервные центры характеризуются высокой чувствительностью к дефициту кислорода, что связано с высокой интенсивностью обменных процессов.

17. Принципы координации рефлекторной деятельности (взаимоотношения возбуждения и торможения на уровне нейрона, на уровне нервных центров, принцип обратной связи, принцип доминанты, принцип общего конечного пути, принцип иерархии).

В основе координационной деятельности ЦНС лежит взаимодействие между процессами возбуждения и торможения. Возбуждение – это активный физиологический процесс, который возникает в нервной ткани под действием раздражителей и характеризуется генерацией нервных импульсов. Торможение – это процесс, который характеризуется прекращением или ослаблением нервной активности, он подавляет возбуждение и препятствует его возникновению. Торможение в ЦНС было открыто И.М.Сеченовым (1862 г.) в опытах на лягушках и получило название «Сеченовское торможение». Согласованная (координационная) деятельность обеспечивается за счет ряда механизмов:

1)Принцип доминанты. Он был сформулирован А.А.Ухтомским как основной принцип работы нервных центров. Доминантный (или господствующий) очаг возбуждения характеризуется следующими свойствами: повышенной возбудимостью; инертностью (стойкостью) возбуждения, т.е. может сохраняться длительное время; способностью к суммации возбуждений, притягивая на себя возбуждение с других центров; способностью тормозить субдоминантные очаги возбуждения других нервных центров.

2)Принцип обратной связи. Процессы саморегуляции в организме в полном объеме могут осуществляться только в том случае, когда функционирует канал обратной связи. За счет импульсов, поступающих по этому каналу, происходит оценка правильности исполнения поставленной задачи, а если она не выполнена, то вносятся коррекции для достижения результата. Велико значение механизмов обратной связи в поддержании гомеостаза (например, поддержание постоянного уровня кровяного давления).

3)Принцип общего конечного пути. Эффекторные нейроны ЦНС, например, мотонейроны спинного мозга, могут вовлекаться в осуществление различных реакций организма возбуждениями, приходящими к ним от большого числа афферентных и промежуточных нейронов, для которых они являются конечным путем (путем от ЦНС к эффектору). Например, на мотонейронах передних рогов спинного мозга, иннервирующих мускулатуру конечности, оканчиваются волокна афферентных нейронов, нейронов пирамидного тракта и экстрапирамидной системы (ядер мозжечка, ретикулярной формации и многих других структур)

4)Принцип иерархичности — соподчинение, т.е. вышележащие отделы ЦНС оказывают свое регулирующее влияние на нижележащие отделы.

5)Принцип конвергенции– импульсы, приходящие в ЦНС по чувствительным нейронам, могут сходиться (конвергировать) к одним и тем же вставочным и двигательным нейронам. Это объясняется тем, что чувствительных нейронов в несколько раз больше чем двигательных.

6)Принцип иррадиации– импульсы, поступающие в ЦНС, при сильном раздражении рецепторов, вызывают возбуждение не только данного нервного центра, но и других нервных центров. Это распространение возбуждения получило название иррадиации.

Процесс иррадиации связан с наличием в ЦНС многочисленных ветвлений аксонов и особенно дендритов нервных клеток и цепей вставочных нейронов, которые объединяют друг с другом различные нервный центры.

7)Принцип реципрокности(сопряжения) – при возбуждении одних нервных центров, другие затормаживаются.

Физиология автономной нервной системы. Нейрогуморальная регуляция

18. Функции автономной (вегетативной) нервной системы. Надсегментарные и сегментарные отделы АНС. Метасимпатическая нервная система.

Биологическое значение вегетативной нервной системы (ВНС) заключается в регуляции функций всех систем и органов, обеспечении всех форм физической и психической деятельности, обеспечении гомеостаза и адаптационно-трофическом влиянии. ВНС имеет 2 уровня: сегментарный и надсегментарный.

сегментарный : симпатическая и парасимпатическая системы.

Надсегментарный : лимбико-ретикулярный комплекс, который состоит из обонятельного мозга, гиппокампа, гипоталамуса(как высший центр регуляции вегетативных функций), таламус (как коллектор всех видов чувствительности), медиобазальных отделов височной доли и др. (Ретикулярная формация как механизм интеграции двигательных, сенсорных, вегетативных аппаратовв изменяющихся условиях),

Ксимпатическим сегментарным образованиям относятся: боковые рога сегментов грудного и верхнепоясничного отделов спинного мозга, преганглионарные, волокна типа В и С,симпатический ствол (превертебральные узлы),серые постганглионарные волокна,паравертебральные узлы и сплетения, интрамуральные ганглии и периферические волокна.

Кпарасимпатическим сегментарным образованиям относятся: эфферентные

системы:вегетативные парасимпатические ядра ствола головного мозга (III н.: Якубовича, Перлеа; VII н.: верхнее слюноотделительное ядро; Iх н.:нижнее слюноотделительное ядро; X н.: заднее ядро),боковые рога сегментов крестцового отдела спинного мозга,превертебральные и интрамуральные ганглии,периферические волокна.

афферентные системы: баро-, хемо-, осмо-, глюкорецепторы,превертебральные сплетения,межпозвоночный узел с вегетативными нейронами,спинно-таламический тракт с волокнами типа В и С,проводники глубокой чувствительности с волокнами типа А, различные отделы коры больших полушарий.

В целом, функциональными особенностями вегетативной иннервации по сравнению с соматической являются: прерывисто-узловой принцип строения,относительная

Соседние файлы в предмете Нормальная физиология