Добавил:
ac3402546@gmail.com Направление обучения: транспортировка нефти, газа и нефтепродуктов группа ВН (Вечерняя форма обучения) Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс Теория конструкционных материалов (ТКМ).doc
Скачиваний:
21
Добавлен:
01.06.2021
Размер:
3.03 Mб
Скачать

Раздел 5. Обработка металлов резанием

  1. Сущность формообразования деталей машин резанием лезвийными и абразивными инструментами, методами поверхностного пластического деформирования; электроэрозионными, электрохимическими, ультразвуковыми и лучевыми методами.

Обр. металлов резанием – процесс срезания режущим инструментом с поверхности заготовки слоя металла для получения требуемой геометрической формы, точности размеров и шероховатости поверхности детали.

Сущность метода пласт деформация: поверхностные слои металла, контактируя с инструментом высокой твердости, в результате давления оказываются в состоянии всестороннего сжатия и пластически деформируются. Давление осуществляется только по зоне контакта. Инструмент – ролики и шарики, перемещающиеся относительно заготовки.

Электроэрозионный метод основан на явлении эрозии (разрушения) электродов из токопроводящих материалов при пропускании между ними импульсного Эл тока. Температура на поверхности обрабатываемой заготовки-электрода возрастает до 10000-12000 С. При этой температуре, мгновенно, испаряется элементарный объем металла.

Эл/химические методы основаны на явлении анодного растворения при электролизе. При прохождении пост Эл тока ч/з электролит на пов-ти заготовки, являющейся анодом происходят хим. реакции и поверхностный слой, превращаясь в хим. соединение, уходит в раствор или удаляются механически.

Ультразвуковые методы. УЗО – разновидность механич. обработки Основана на явлении магнитострикции(способность ферромагнитных сплавов или металлов изменять размеры в переменном магнитном поле). Колебании Эл/м поля при УЗО 16-20кГц, амплитуда колебаний сердечника 5-10мкм(со стержнем-концентратором до 40-60мкм). К концентратору крепят рабочий инструмент - пуассон.

Лучевые методы. Электронно-лучевая. Метод основан на превращении кинетич. энергии пучка в тепловую. Под действием высокой температуры происходит испарение металла с поверхности заготовки. Лазерная обраб-ка(тепловое воздействие светового луча высокой энергии). Плазменный(плазму, имеющую температуру 10000-30000 С направляют на обрабатываемую поверхность заготовки).

  1. Схема образования стружек при резании металлов. Основные виды стружек и способы стружколомания.

Схема образования: Движущийся резец под действием силы Р вдавливается в металл, в металле возникают упругие деформации. При дальнейшем движении резца упругие деф-ции переходят в пластические. Пластические деформации приводят к сдвиговым. Сдвиговые деформации вызываю скольжение отдельных частей зерен по кристаллографическим плоскостям(плоскостям скольжения) в определенных направлениях. Когда пластические деформации достигают наибольшей величины, а напряжения превысят силы внутреннего сцепления зерен металла, скалывается элементарный объем металла.

Виды стружек: 1) Сливная стружка образуется при резании пластичных металлов и сплавов и представляет собой сплошную ленту с гладкой внутренней (прирезцовой) стороной. С внешней стороны слабо выраженные зазубрины.

2) Стружка скалывания образуется при резании средних по твердости материалов. Гладкая c внутренней стороны и с явно выраженным зазубринами с наружней.

3) Стружка надлома образуется при обработке хрупких металлов, состоит из отдельных элементов, не связанных между собой.

Для получения стружки надлома на режущем инструменте выполняют стружкозавивательные и стружколомательные устройства, применяют прерывистый процесс резания, изменяют геометрию режущего инструмента, режим резания, а при изготовлении деталей на автоматах используют специальные автоматные стали.

  1. Тепловые явления при резании металлов. Причины образования тепла. Уравнение теплового баланса. Отрицательное влияние образующегося тепла на заготовку и инструмент. Смазочно-охлаждающие технологические средства. Экспериментальная формула для определения температуры в зоне резания.

Теплота является одним из основных факторов влияющих на резание.

Теплообразование оказывает двойное воздействие на резание:

Интенсивное тепловыделение

1)облегчает деформирование материала срезаемого слоя

2)способствует образованию пограничного слоя на контактных поверхностях стружки и заготовки, уменьшая износ инструмента

1)тепловое воздействие на режущее лезвие инструмента приводит к изменению структуры и снижает прочность материала инструмента.

2)с повышением температуры инструмента увеличивается его размеры, вследствие чего снижается точность обработки

Источником теплоты при резании являются пластическое деформирование в зоне стружкообразования, трение стружки о переднюю поверхность инструмента и трение поверхности резания и обработанной поверхности о задние поверхности лезвия инструмента.

Уравнение теплового баланса:

-кол-во теплоты выделяемое при пластическом деформировании обрабатываемого материала.

-при трении стружки о переднюю поверхность резания.

- при трении задних поверхн. лезвия о заготовку.

–теплота, уходящая в стружку.

–теплота, уходящая в заготовку.

–теплота, уходящая в инструмент.

–теплота, передаваемая окружающей среде.

Теплообразование отрицательно влияет на процесс резания. Нагрев инструмента до высоких температур (800-1000 С) вызывает структурные превращения в металле, из которого он изготовлен, снижение твердости инструмента и потерю режущих свойств. Нагрев инструмента вызывает изменение его геометрических размеров, что влияет на точность размеров и геометрическую форму обработанных поверхностей.

Нагрев заготовки вызывает изменение ее геометрических размеров. Вследствие жесткого закрепления на станке заготовка деформируется. Температурные деформации инструмента, приспособления, заготовки и станка снижают качество обработки.

Для уменьшения отрицательного влияния теплоты на процесс резания обработку ведут в условиях применения смазочно-охлаждающих сред. В зависимости от технологического метода обработки, физико-механических жидкости. Обладая смазывающими свойствами, жидкости снижают трение стружки о переднюю поверхность инструмента и задних поверхностей инструмента о заготовку. Одновременно снижается работа деформирования. Общее количество теплоты, выделяющейся при резании, уменьшается. Смазочно-охл среды отводят теплоту во внешнюю среду от мест ее образования, охлаждая режущий инструмент, деформируемый слой и обработанную поверхность заготовки. Смазывающее действие сред препятствует образованию налипов металла на поверхностях инструмента, в результате чего снижается шероховатость обработанных поверхностей заготовки. Применение смазочно-охл сред приводит к тому, что эффективная мощность резания уменьшается на 10-15%; стойкость режущего инструмента возрастаетсвойств материалов обрабатываемой заготовки и режущего инструмента, а также режима резания применяют различные смазочно-охлаждающие среды.

Чаще всего при обработке резанием применяют смазочно-охлаждающие, обработанные поверхности заготовок имеют меньшую шероховатость и большую точность, чем при обработке без применения смазочно-охл сред.

Экспериментальная формула:

С-общ.коэфф. характеризующий условия обработки.

Z,y,x – показатели степени.

  1. Основные конструктивные части металлорежущих инструментов. Основные поверхности и кромки токарного резца.

Рассмотрим основные конструктивные части металлорежущих инструментов на примере токарного резца

Токарный прямой проходной резец имеет головку – рабочую часть (римская 1), стержень-корпус(римская 2), который служит для закрепления резца в резцедержателе. Головка резца образуется при заточке и имеет следующие элементы: переднюю поверхность 1, по которой сходит стружка; главную заднюю поверхность 2, обращенную к поверхности резания заготовки; вспомогательную заднюю поверхность 5,обращенную к обработанной поверхности заготовки; главную режущую кромку 3 и вспомогательную 6; вершину 4. Инструмент затачивают по передней и задним поверхностям. Для определения углов, под которыми расположены поверхности рабочей части инструмента относительно друг друга, вводят координатные плоскости. Основная плоскость (ОП) – плоскость параллельная направлениям продольной и поперечной подач. Плоскость резания (ПР) проходит через главную режущую кромку резца, касательно к поверхности резания. Главная секущая плоскость (N-N) – плоскость, перпендикулярная к проекции главной режущей кромки на основную плоскость. Вспомогательная секущая плоскость (N1-N1) – плоскость, перпендикулярная к проекции вспомогательной режущей кромки на основную плоскость.

Типы токарных резцов: фасонный, проходной прямой, проходной стянутый, проходной упорный, для чистовой обработки, отрезной, резьбовой, подрезной ,расточной.

  1. Определение углов токарного резца в статической системе координат, их назначение и влияние на процесс резания.

Углы резца определяют положение элементов рабочей части относительно координатных плоскостей и друг друга. Эти углы называют углами резца в статике.

У токарного резца различают главные и вспомогательные углы, которые рассматривают, исходя из следующих условий: ось резца перпендикулярна к линии центров станка; вершина резца находится на линии центров станка; совершается главное движение резания.

Углы резца делят: на главные, вспомогательные и углы в плане.

Главные углы измеряют в главной секущей плоскости: это главный передний угол γ, главный задний угол α, угол заострения β, и угол резания δ.

Вспомогательные углы измеряют во вспомогательной секущей плоскости: это вспомогательный задний угол α1, и вспомогательный передний угол γ1.

Углы в плане – это главный угол в плане φ, вспомогательный угол γ1 и угол при вершине в плане ε.

Главный передний угол γ – угол между передней поверхностью резца и плоскостью, проведённой через главную режущую кромку перпендикулярно плоскости резания; служит для облегчения схода стружки, уменьшения работы деформации и расхода мощности на резание.

При обработке деталей из хрупких и твердых материалов для повышения стойкости резца следует назначать меньшие значения угла γ, иногда даже отрицательные. При обработке деталей из мягких и вязких материалов передний угол увеличивают.

Главный задний угол α – угол между задней поверхностью и плоскостью резания; служит для уменьшения трения между задней поверхностью и заготовкой.

Вспомогательный задний угол α1измеряют во вспомогательной секущей плоскости между следом вспомогательной задней поверхности и следом плоскости, проходящей через вспомогательную режущую кромку перпендикулярно к основной плоскости. Наличие угла α1 уменьшает трение между вспомогательной задней поверхностью инструмента и обработанной поверхностью заготовки.

Главный угол в плане φ – угол между проекцией главной режущей кромки на основную плоскость и направлением подачи – оказывает значительное влияние на шероховатость обработанной поверхности. С уменьшение угла φ шероховатость обработанной поверхности снижается. Одновременно увеличивается активная рабочая длина режущей кромки. Сила и температура резания, приходящееся на единицу длины кромки, уменьшаются, что снижает износ инструмента. С уменьшением угла φ возрастает сила резания, направленная перпендикулярно к оси заготовки и вызывающая ее повышенную деформацию. С уменьшением угла φ возможно возникновение вибраций в процессе резания, снижающих качество обработанной поверхности.

Вспомогательный угол в плане φ1 – угол между проекцией вспомогательной режущей кромки на основную плоскость и направлением, обратным движению подачи. С уменьшением угла φ1 шероховатость обработанной поверхности снижается, увеличивается прочность вершины резца и снижается его износ.

Угол наклона главной режущей кромки λ – угол между главной режущей кромкой и линией, проведённой через вершину резца параллельно основной плоскости. С увеличением угла λ качество обработанной поверхности ухудшается.

  1. Инструментальные материалы: инструментальные стали, твердые сплавы, режущая керамика, сверхтвердые инструментальные материалы. Их назначение и обозначение.

К инструментальным материалам, удовлетворяющим в той или иной мере перечисленные требования, относятся:

- инструментальные стали,

- металлокерамические твердые сплавы,

- режущая минералокерамика

- сверхтвердые инструментальные материалы

Инструментальные стали

В зависимости от химического состава инструментальные стали подразделяются на углеродистые, легированные и быстрорежущие.

У них основным химическим элементом, определяющим твердость и физико-механические свойства, является углерод.

В холодном состоянии эти стали различаются по твердости незначительно.

Основное их различие – это разная теплостойкость.

Применение: при обработке конструкционных сталей.

Металлокерамические твердые сплавы Вольфрамовые твердые сплавы

Твердые сплавы – это инструментальный материал, состоящий из твердых зерен карбидов, соединенных связкой.

Основное свойство карбидов – их твердость.

Основными карбидами для изготовления твердых сплавов являются: карбид вольфрама (WC), карбид титана (TiC), карбид тантала (TaC). В качестве связки служит металлический кобальт (Со).

Твердые сплавы изготовляют методом порошковой металлургии. Порошки карбидов смешивают в определенных пропорциях, прессуют в формах и спекают при температуре 1500…2000оС. При спекании твердые сплавы приобретают высокую твердость (HRС 72…77) и в дополнительной термической обработке не нуждаются.

Теплостойкость твердых сплавов различных марок составляет 800…900оС, что позволяет вести обработку при высоких скоростях резания (до 15 м/с).

Безвольфрамовые твердые сплавы

Общим недостатком вольфрамосодержащих твердых сплавов помимо высокой хрупкости является повышенная дефицитность вольфрамовый руды – основного компонента, определяющего их повышенные физико-механические характеристики. Поэтому в последние годы стали применять так называемые безвольфрамовые твердые сплавы.

Карбиды вольфрама были заменены карбидами титана с добавками молибдена, никеля и других тугоплавких металлов. В качестве связки – никель и молибден. Они маркируются буквами КТС и ТН.

Твердые сплавы КТС-1 и КТС-2 содержат 15…17% Ni и 7…9% Мо соответственно, остальное – карбид титана (TiC). Твердые сплавы типа ТН -20, ТН25, ТН30 в качестве связующего металла применяют в основном никель в количестве 16…30%. Концентрация молибдена составляет 5…9%, остальное – также карбид титана (TiC).

Теплостойкость безвольфрамовых твердых сплавов составляет 750…800оС, а твердость HRС 72…77.

Металлокерамические твердые сплавы

Твердые сплавы с покрытием

Для дополнительного повышения износостойкости твердосплавных пластин наносят тонкий слой (2…12 мкм) карбида или нитрида титана или других высокотвердых материалов. Это позволяет в 2…5 раз повысить стойкость режущего инструмента с покрытием по сравнению со стойкостью исходного материала.

Твердые сплавы с покрытием производятся путем наложения различных слоев на пластину. Основным методом в настоящее время является химическое осаждение – CVD. Процесс CVD – это химические реакции различных газов при нагреве пластины до 1000оС.

В качестве первого слоя покрытия обычно используется карбонитрид титана - Ti(CN). Он обладает хорошей износостойкостью и твердостью.

В качестве второго слоя наносят оксид алюминия - Al2O3 , который сохраняет твердость и химическую инертность при высоких температурах.

Верхний (третий) тонкий слой нитрида титана – TiN на поверхности пластины уменьшает трение и придает пластине золотистый цвет. Режущая минералокерамика

Минералокерамика – это синтетический материал, основой которого служит кристаллический оксид алюминия (глинозем - Al2O3), подвергнутый спеканию при температуре 1720…1750оС.

Недостаток – высокая хрупкость и низкая ударная вязкость

Сверхтвердые инструментальные материалы

К режущим сверхтвердым материалам относятся природные алмазы и синтетические материалы. Самым твердым из известных инструментальных материалов является алмаз. По химическому составу алмаз представляет собой одну из аллотропных модификаций углерода – кристаллический углерод.

Он обладает высокой износостойкостью, хорошей теплопроводностью, небольшим коэффициентом трения и малой адгезионной способностью к металлам, за исключением сплавов железа с углеродом. Наряду с высокой твердостью алмаз обладает большой хрупкостью.

  1. Износ и стойкость металлорежущих инструментов. Причины износа и параметры, характеризующие износ на примере токарных резцов. Определение стойкости металлорежущих инструментов. Обозначение стойкости и средняя ее величина у токарных резцов.

В процессе резания возникает трение стружки о переднюю поверхность, обрабатываемой детали о заднюю поверхность инструмента. В результате инструмент изнашивается и теряет режущую способность.

Рассмотрим механизм износа режущих инструментов при обработке сталей.

Абразивный (характерный для сталей):

Сущность – элементарное царапанье рабочей поверхности РИ твёрдыми включениями обрабатываемого материала.

Причина – твёрдые включения в обрабатываемых сталях всегда имеются в виде цементитов и избыточных карбидов легирующих элементов.

Особенно наблюдается при сухом резании сталей, точении по "корке", обработке сварных деталей, обработке силуминов.

Адгезионный:

Сущность – отрыв частиц материала инструмента силами межмолекулярного сцепления металлов пары инструмент-заготовка.

Причины – высокие давление и температура резания.

Особенно наблюдается при работе без СОЖ (смазочно-охлаждающие жидкости).

Окислительный (Химический):

Сущность – образование на рабочей поверхности инструмента менее прочных плёнок оксидов и химических соединений, и их удаление силами трения.

Причины – высокая температура резания, адсорбция кислорода и использование СОЖ. Особенно наблюдается при сухом резании. Диффузионный:

Сущность – взаимная диффузия инструмента и обрабатываемого материала, сопровождаемая уносом (удалением) инструментального материала.

Причина – высокая температура резания.

На практике существует комбинация этих видов износа.

Различают три основных вида износа: износ по передней поверхности, износ по задней поверхности и износ по передней и задней поверхностям. Наиболее часто встречается одновременный износ и по передней, и по задней поверхности.

Допускаемая величина износа при обработке стали для токарных резцов с пластинками твердого сплава 0,8— 1 мм, для резцов из быстрорежущей стали и при работе с охлаждением, 1,5—2 мм.

Стойкость металлорежущих инструментов

Стойкость (период стойкости) – Т – металлорежущих инструментов – суммарное время работы на определенном режиме резания до затупления.

При точении токарными резцами сталей средней твердости Т~30…90 мин

V=c/t^m

V – скорость резания;

С – постоянная величина;

m – показатель относительной стойкости (0,1…0,3)

Стойкость инструмента зависит главным образом от скорости резания. На неё оказывают влияние также материал, из которого изготовлен инструмент, обрабатываемый материал, геометрические параметры режущей части инструмента.

И, наконец, в соответствии с заданной стойкостью по формулам или соответствующим таблицам находят необходимую скорость резания.

Стойкость инструмента характеризуется периодом стойкости. Например, для твердосплавных резцов при выполнении операций промежуточного формообразования можно принять период стойкости Т= 30…45 мин.

53. Допустимая скорость резания и ее определение. Экспериментальная формула для определения допустимой скорости при точении и влияние на нее параметров режима резания.

Допустимая скорость резания металлов

Допустимая скорость резания – это такая скорость, с которой может работать резец до затупления в течение определённого времени. Это позволяет правильно назначать режимы резания (V,S,t), от которых зависят производительность труда и качество обрабатываемых деталей.

На скорость резания, допускаемую инструментом, влияют:

- стойкость инструмента,

-физико-механические свойства обрабатываемого и инструментального

материалов,

- геометрия и микрогеометрия режущей части инструмента,

- глубина резания и подача,

- метод охлаждения и СОЖ,

- вид обработки и другие факторы.

Рассмотрим зависимость Vд(Т)

Резание при малых скоростях нерационально – из-за низкой производительности.

Резание при больших скоростях также нерационально из-за низкой стойкости инструмента.

Поэтому Vд определяется:

где CV – постоянный коэффициент зависящий от физико-механических свойств обрабатываемого материала, материала режущей части резца и условий обработки;

m -- показатель относительной стойкости инструмента.

- стойкость твёрдосплавных резцов от 30 до 90 мин,

- стойкость зубообрабатывающего инструмента – от 240 до 360 мин.

  1. Классификация и системы обозначения металлорежущих станков. Классификация металлообрабатывающих станков по виду обработки; степеням точности. Системы обозначения для серийных и специализированных станков.

Классификация по технологическому методу обработки станки делят на токарные, сверлильные, шлифовальные, полировальные и доводочные, зубообрабатываемые, фрезерные, строгальные, разрезные, протяжные, резьбообрабатывающие и т.д.

Классификация по комплексу признаков наиболее полно отражается в общегосударственной Единой системе условных обозначений станков. Она построена по десятичной системе; все металлорежущие станки разделены на 10 групп, группа – на 10 типов, а тип – на 10 типоразмеров. В группу объединены станки по общности технологического метода обработки или близкие по назначению. Типы станков характеризуют такие признаки, как назначение, степень универсальности, число главных рабочих органов, конструктивные особенности. Внутри типа станки различают по техническим характеристикам.

В соответствии с этой классификацией каждому станку присваивают определенный шифр. Первая цифра шифра определяет группу станков, вторая - тип, третья (или 3-я и 4-я) – условный размер станка. Буква на втором или третьем месте позволяет различать станки одного типоразмера, но с разными техническими характеристиками. Буква в конце шифра указывает на различные модификации станков одной базовой модели. ПРИМЕР: 2Н135 – вертикально-сверлильный станок (группа 2, тип 1), модернизированный (Н), с наибольшим условным диаметром сверления 35 мм (35).

Различают станки универсальные, широкого применения, специализированные и специальные.

По степени автоматизации различают станки с ручным управлением, полуавтоматы, автоматы и станки с программным управлением. По числу главных рабочих органов станки делят на одношпиндельные, многошпиндельные, односуппортные, многосуппортные. При классификации по конструктивным признакам выделяются существенные конструктивные особенности (например, вертикальные и горизонтальные токарные полуавтоматы). В классификации по точности установлены пять классов станков: Н – нормальной, П – повышенной, В – высокой, А – особо высокой точности и С – особо точные станки.

  1. Формообразование деталей машин на токарных станках. Способы формообразования выполняемые на универсальных токарно-винторезных станках. Разновидности токарной обработки; точение, растачивание, подрезание, отрезание. Технологические возможности токарной обработки по шероховатости и точности.

Метод формообразования поверхностей характеризуется двумя движениями: вращательным движением заготовки(скорость резания) и поступательным движением режущего инструмента-резца(движение подачи).

При точение можно формировать наружние и внутренние поверхности, фасонные.

При обработке заготовок на токарн станках выполняются виды работ :1) Точение(оттачивание, растачивание, подрезание, обработка винтовых поверх, разрезание заготовок, проточка канавок).

2) Сверление 3) Зенкерования 4) Развертывание 5) Нарез резьбы 6) Шлифование, полирование.

Точение бывают:

1) Черновое или обдирочное (самый грубый вариант Ra=25-100 мкм)

2) Получистовое ( точность 10-12 квалитет) Ra=6.3-12.5 мкм

3) Чистовое ( точность 7-10 кв Ra-1.6-3.2 мкм.

4) Тонкое точение ( обработка алмазными резцами) Т-6-7 кв. Ra=0.8-1.6 мкм.

  1. Основные типы токарных станков и их использование в основных видах производства. Классификация токарных резцов по характеру выполняемых операций, по направлению подачи, по форме головки, по конструкции. Основные виды приспособлений к токарным станкам и их назначение.

По тех назначении: Фасоные, проходные, проходные отогнутые, проходные упорные, чистовые, канавочные, резьбовые, подрезные, расточные.

По характеру обработки: Черновые, получистовые, чистовые

По направлению подачи: правые и левые.

По способу изготовления: Целые, с приваренной встык рабочей частью, с приваренной или припаянной пластинкой инструментального материала, со сменными пластинками реж материала.

По форме рабочей части: прямые, отогнутые, оттянутые.

На токарно-винторезных станках для закрепления используют трехкулачковые самоцентрирующие патроны. Патроны применяют для закрепления заготовок при отношении их длины к диаметру l/d<4. При l/d=4-10 заготовку устанавливают в центрах. Центры бывают: упорные, срезанные(подрезание торцов заготовки), шариковые(обтачивание конических поверхностей заготовки способом сдвига задней бабки в поперечном направлении)

При отношении l/d>10 применяют люнеты (для уменьшения деформациизаготовки от сил резания.).

  1. Параметры режима резания на токарных станках

Рис. 1. Глубина резания при различніх видах обработки. а-наружное точение(обтачивание), б-растачивание, в-подрезание торца, г-отрезание

Процесс резания характеризуется определен­ным режимом. К элементам режима резания относятся глубина резания, подача и скорость резания.

Глубина резания t — величина срезаемого слоя за один проход резца, измеряемая в направлении, перпендикулярном к обработанной поверхности.  При наружном продольном точении глубина резания определяется как полуразность между диаметром заготовки (обра­батываемой поверхности) D  и диаметром обра­ботанной поверхности d  (рис.   1 а).

t=D-d/2 мм.

При растачивании (рис. 1, б) глубина резания представляет собой полуразность между диаметром отверстия после обработки и диа­метром отверстия до обработки (рис. 1. в). При подрезании глубиной резания являемся величина срезаемого слоя, измеренная перпендикулярно к обработанному торцу (рис. 1), и при отрезании и прорезании глубина резания равна ширине канавки, образуемой резцом (рис.   1 г).

Подача (скорость подачи) — величина перемещения режущей кромки в направлении движения подачи за один оборот заготовки (х мм/об) (рис. 2). При точении различают продольную подачу, направленную вдоль оси заготовки; поперечную подачу, направленную перпендикулярно оси заготовки; наклонную подачу под углом к оси заготовки (при обработке конической поверхности).

Скорость резания V — путь, пройденный наиболее отдаленной от оси вращения точкой поверхности резания относительно режущей кромки резца за единицу времени (м мин). Скорость резания зависит от частоты вращения и диаметра обрабатываемой заготовки. Чем больше диаметр D  заготовки, тем больше скорость резания при одной и той же частоте вращения, так как за один оборот заготовки (или за одну минуту) путь, пройденный точкой 4 на поверхности резания (рис. 3), будет больше пути, пройденного точкой Б (πD>πd) .

Рис. 2. Элементы резания при наружном точении

Величину скорости резания можно определить по формуле

v=πDn/1000 м/мин

где π  = 3,14; D  — наибольший диаметр поверхности резания, мм; п – частота вращения заготовки (число оборотов в минуту). Если известна скорость резания, допускаемая режущими свойствами инструмента v и диаметр заготовки D , можно определить требуемую частоту вращения заготовки и настроить на частоту шпинделя:

n=1000v/πD  об/мин

 

Рис. 3. Данные для определения скорости резания при точении

  1. Формообразование деталей машин на фрезерных станках. Виды поверхностей, обрабатываемые на фрезерных станках. Основные виды фрезерования по последовательности снятия припусков, по перемещению фрез относительно заготовок. Технологические возможности тонкого фрезерования сталей по шероховатости и точности обработки.

Фрезерование – технологический способ обработки заготовок многолезвийными инструментами – фрезами.

Основные положительные качества:

- высокая производительность;

- широкие технологические возможности.

Основные технологические возможности:

- плоские и криволинейные внутренние и внешние поверхности;

- пазы, шлицы, канавки (прямые и винтовые);

- зубчатые колёса, резьбы;

- многолезвийный инструмент.

Формообразование - Dr – вращательное движение фрезы;

- Ds – поступательное круговое или винтовое движение заготовки.

1. Обрабатываемый материал. Обычно это незакаленные стали, цветные металлы, сплавы с твердостью менее HRC40. Появление современных сверхтвердых материалов позволяет, в ряде случаев, обрабатывать плоские поверхности закаленных сталей, но процесс не нашел широкого применения из-за узких технологических возможностей (только открытые плоские поверхности) и недостаточной точностью обычных фрезерных станков.

2.Форма и размеры получаемой поверхности может быть чрезвычайно сложной. Например, при обработке на копировально-фрезерных станках лопаток турбин, гребных винтов судов и т.д. Фрезерные станки могут быть чрезвычайно малых размеров (гравировально-фрезерные) и гигантских размеров, для обработки деталей с размерами более 20м (продольно-фрезерные и специальные станки).

3. Экономическая точность обработки при фрезеровании 9-14 квалитеты. Шероховатость Rz=80 – Rz=10. В ряде случаев точность может достигать 7 квалитета, при шероховатости Rz=5.

Технологический метод формообразования поверхностей фрезерованием характеризуется главным вращательным движением инструмента и обычно поступательным движением подачи. На фрезерных станках обрабатывают горизонтальные, вертикальные и наклонные плоскости, фасонные поверхности, уступы и пазы различного профиля. Особенность процесса фрезерования – прерывистость резания каждым зубом фрезы. При цилиндрическом фрезеровании плоскостей работу выполняют зубья, расположенные на цилиндрической поверхности фрезы. При торцовом фрезеровании плоскостей в работе участвуют зубья, расположенные на цилиндрической и торцовой поверхностях фрезы. Цилиндрическое и торцовое фрезерование в зависимости от направления вращения фрезы и направления подачи заготовки можно осуществлять двумя способами:

1) против подачи (встречное фрезерование), когда направление подачи противоположно направлению вращения фрезы;

2) по подаче (попутное фрезерование), когда направления подачи и вращения фрезы совпадают.

  1. Основные типы фрезерных станков и их назначение. Классификация фрез по видам обрабатываемых поверхностей (плоских и фасонных), по конструкции фрез, по виду режущих зубьев, инструментальному материалу.

Существует несколько разновидностей фрезерных станков. Наиболее распространенными являются консольно-фрезерные станки, отличительной особенностью которых служит наличие консоли, предназначенной для подъема и опускания стола станка. Консольно-фрезерные станки подразделяются на горизонтально-фрезерные, вертикально-фрезерные, универсально-фрезерные и широкоуниверсальные.

Ось шпинделя, оправки и фрезы горизонтально-фрезерных станков расположена горизонтально, а стол станка не имеет устройства для поворота и может перемещаться только в продольном, поперечном и вертикальном направлениях.

Вертикально-фрезерные станки имеют вертикальное расположение оси шпинделя и фрезы. У универсальных моделей вертикально-фрезерных станков имеется поворотная фрезерная головка.

Универсально-фрезерные станки отличаются от горизонтальных тем, что стол можно поворачивать в горизонтальной плоскости под любым углом в пределах 45°.

Широкоуниверсальные фрезерные станки имеют головки, позволяющие при наладке станка поворачивать фрезу вокруг двух взаимно перпендикулярных осей и устанавливать ее, таким образом, в любое нужное положение относительно обрабатываемого изделия.

Консольно-фрезерные станки применяются для выполнения разнообразных фрезерных работ различными фрезами. 

По технологическому признаку различают фрезы для обработки плоскостей, пазов, шлицев, фасонных поверхностей, тел вращения, зубчатых и резьбовых поверхностей, разрезания материала и др. 

По конструктивным признакам фрезы подразделяют следующим образом: 1) по расположению зубьев на исходном цилиндре (торцовые, цилиндрические, дисковые, двухсторонние, угловые, фасонные, концевые и др.); 2) по конструкции зуба (с острозаточенными и затылованными зубьями); 3) по направлению зуба (с прямыми, наклонными, винтовыми, равнонаправленными зубьями); 4) по конструкции фрезы (цельные, составные, со вставными зубьями, сборные); 5) по способу крепления (насадные, концевые с коническим или цилиндрическим хвостовиком); 6) по виду инструментального материала режущей части (из быстрорежущей стали, твердых сплавов, режущей керамики, сверхтвердых материалов).

Цилиндрические и торцовые фрезы предназначены для обработки плоскостей. Дисковые фрезы (пазовые, двухсторонние, трехсторонние) применяют для фрезерования пазов, уступов и боковых плоскостей. Прорезные и отрезные фрезы используют для прорезания узких пазов и разрезания материалов. Концевые фрезы применяют для обработки пазов, уступов и плоскостей шириной B<0,8D, где D — диаметр концевой фрезы. Угловые фрезы применяют в основном для фрезерования стружечных канавок режущих инструментов и скосов. Фасонные фрезы предназначены для фрезерования фасонных поверхностей.  Фрезы изготовляют цельными и сборными (корпус из конструкционной стали, а режущие зубья из быстрорежущей стали или твердого сплава). Цилиндрические фрезы диаметром до 90 мм, торцовые насадные фрезы диаметром до 110 мм, дисковые трехсторонние фрезы с мелким зубом, дисковые пазовые, угловые, фасонные, отрезные, прорезные, концевые и шпоночные фрезы изготовляют цельными. Цилиндрические торцовые и дисковые фрезы диаметром более 75 мм и торцовые фрезерные головки изготовляют со вставными зубьями. 

  1. Сверление. Формообразование отверстий. Шероховатость и точность отверстий, получаемых сверлением в конструкционных сталях. Классификация спиральных сверл по конструкции, длине, форме получаемых отверстий, инструментальному материалу, типу хвостовика и направлению стружкоотводящих канавок. Основные части спирального сверла. Основные типы сверлильных станков и их назначение.

Сверление – распространенный метод получения отверстий в сплошном материале. Сверлением получают сквозные и несквозные (глухие) отверстия и обрабатывают предварительно полученные отверстия в целях увеличения их размеров, повышения точности и снижения шероховатости поверхности.

Отверстия на сверлильных станках обрабатывают сверлами, зенкерами, развертками и метчиками. Сверла по конструкции и назначению подразделяют на спиральные, центровочные и специальные. Наиболее распространенный для сверления и рассверливания инструмент – спиральное сверло, состоящее из рабочей части, шейки, хвостовика и лапки. В рабочей части различают режущую и направляющую части с винтовыми канавками. Шейка соединяет рабочую часть сверла с хвостовиком. Хвостовик необходим для установки сверла в шпинделе станка. Лапка служит упором при выбивании сверла из отверстия шпинделя. Сверло имеет две главные режущие кромки, образованные пересечением передних и задних поверхностей и выполняющие основную работу резания; поперечную режущую кромку (перемычку) и две вспомогательные режущие кромки. На цилиндрической части сверла вдоль винтовой канавки расположены две узкие ленточки, обеспечивающие направление сверла при резании.

Геометрические параметры сверла определяют условия его работы. Передний угол γ измеряют в главной секущей плоскости, перпендикулярной к главной режущей кромке. Задний угол α измеряют в плоскости, параллельной оси сверла. Передний и задний углы в различных точках главной режущей кромки различны. У наружной поверхности сверла угол γ наибольший, а угол α наименьший; ближе к оси – наоборот. Угол при вершине сверла 2φ измеряют между главными режущими кромками; его значение различно в зависимости от обрабатываемого материала. Угол наклона поперечной режущей кромки ψ измеряют между проекциями главной и поперечной режущих кромок на плоскость, перпендикулярную к оси сверла. Угол наклона винтовой канавки ω измеряют по наружному диаметру. С увеличением угла ω увеличивается передний угол γ при этом облегчается процесс резания и улучшается выход стружки.

Вертикально-сверильный станок: на сверлильных станках выполняют сверление, рассверливание, зенкерование, развертывание, цекование, зенковакие, нарезание резьбы и обработку сложных отверстий.

Радиально-сверильный станок: на радиально-сверлильных станках обрабатывают отверстия, расположенные на значительном расстоянии друг от друга, в крупногабаритных и большой массы заготовках. Эти станки в отличие от вертикально-сверлильных обеспечивают (без изменения положения заготовки) совмещение осей режущего инструмента и обрабатываемых отверстий перемещением шпиндельной головки.

Агрегатный станок: На агрегатных станках заготовки одновременно обрабатывают несколькими инструментами. На агрегатных станках наряду со сверлением растачивают отверстия, фрезеруют поверхности и т. д. Агрегатные станки – это преимущественно станки-полуавтоматы, и их часто встраивают в автоматические линии. Они обеспечивают высокую производительность, стабильную точность обработки и допускают многократное использование нормализованных деталей и узлов при перекомпоновке станка на выпуск нового изделия.

За скорость резания (м/мин) при сверлении принимают окружную скорость точки режущей кромки, наиболее удаленной от оси сверла: v = (π*D*n)/1000, где D – наружный диаметр сверла, мм; п – частота вращения сверла, об/мин.

Подача sB (мм/об) равна осевому перемещению сверла за один оборот.

За глубину резания t (мм) при сверлении отверстий в сплошном материале принимают половину диаметра сверла: t = D/2, а при рассверливании t = (D d)/2, где d – диаметр обрабатываемого отверстия, мм.

  1. Зенкерование и развертывание. Цели зенкерования и развертывания. Шероховатость и точность отверстий в конструкционных сталях, достигаемые при зенкеровании и развертывании. Классификация зенкеров и разверток: по виду привода, форме обрабатываемых отверстий по конструкции; по инструментальным материалам. Основные части зенкера и развертки.

Зенкерование – технологический способ обработки отверстий, полученных сверлением, литьём, штамповкой, а также обработки торцевых и конусных поверхностей.

Цель зенкерования – повысить точность и чистоту обработанных отверстий и поверхностей.

Точность растёт, а шероховатость падает за счёт:

- большого числа режущих зубьев у зенкера (3…8);

- повышенной жесткости зенкеров;

- самоцентрирования зенкеров при обработки;

- меньшей скорости резания.

Виды зенкерования:

- черновое (предварительное) снятие припуска;

- чистовое (шероховатость Ra 6,3…3,2 мкм).

Стойкость – Т=30…80 мин в зависимости от обрабатываемого материала.

Развёртывание – технологический способ завершающей обработки просверленных, зенкованных или расточенных отверстий.

Цель развёртывания – получение точных по форме и диаметру отверстий с малой шероховатостью.

Обеспечивается:

- малым припуском и последующим его снятием;

- большим числом режущих зубьев (8…20);

- малой Vрез и S;

- обильной смазкой.

Стойкость Т=40…100 мин в зависимости от обрабатываемого материала.

ТИПЫ ЗЕНКЕРОВ

а) цельный с коническим хвостовиком;

б) с вставными ножами и цельной державкой с коническим хвостовиком;

в) насадные цельные из быстрорежущих сталей;

г) насадные с пластинками твердого сплава;

д) насадные с вставными ножами;

е) для цилиндрических углублений;

ж) торцевые;

з) для обработки центровых отверстий;

и) для конических углублений

Типы разверток:

А – ручная цилиндрическая:

1 – рабочая часть; 2 – шейка; 3 – хвостовик;

Lн - направляющий конус; Lр - режущая часть;

Lк - калибрующая часть; Lоб - обратный конус.

Б – машинная цельная с коническим хвостовиком.

В – ручная регулируемая (разжимная).

Г – конические под конус Морзе.

1 – черновая; 2 – получистовая; 3 – чистовая.

Конструктивные элементы зенкера:

1 — режущая (заборная), 2 — калибрующая, 3 — рабочая части, 4 — шейка, 5 — хвостовик, 6 — ленточка

Основными конструктивными элементами развёртки являются режущая и калибрующая части, число зубьев, направление зубьев, углы резания, шаг зубьев, профиль канавки, зажимная часть.

Режущая часть.

Угол конуса φ определяет форму стружки и соотношение составляющих усилий резания. Угол φ у ручных развёрток – 1°…2°, что улучшает направление развёртки при входе и уменьшает осевую силу; у машинных при обработке стали φ = 12°…15°; при обработке хрупких материалов (чугуна) φ = 3°… 5°.

Стандартные развёртки делают с неравномерным окружным шагом с целью предупреждения появления в развёртываемом отверстии продольных рисок. Из-за неоднородности обрабатываемого материала на зубьях развёртки происходит периодическое изменение нагрузки, что ведёт к отжиму развёртки и появлению на обработанной поверхности следов в виде продольных рисок.

Калибрующая часть состоит из двух участков: цилиндрического и участка с обратной конусностью. Длина цилиндрического участка около 75% от длины калибрующей части. Цилиндрический участок калибрует отверстие, а участок с обратной конусностью служит для направления развертки в работе. Обратная конусность уменьшает трение об обработанную поверхность и снижает разбивку. Т.к. при ручном развертывании разбивка меньше, то и угол обратной конусности у ручной развёртки меньше, чем у машинной. При этом цилиндрический участок у ручных развёрток может отсутствовать.

Цилиндрическая ленточка на калибрующей части калибрует и выглаживает отверстие. Уменьшение её ширины снижает стойкость развертки, однако повышает точность обработки и снижает шероховатость, т.к. уменьшает трение. Рекомендуемая ширина ленточки f = 0,08…0,5 мм в зависимости от диаметра развёртки.

Число зубьев z ограничивается их жёсткостью. С увеличением z улучшается направление развертки (больше направляющих ленточек), повышаются точность и чистота отверстия, но снижается жесткость зуба и ухудшается отвод стружки. Z принимается чётное - для облегчения контроля диаметра развёртки.

Канавки чаще выполняют прямыми, что упрощает изготовление и контроль. Для обработки прерывистых поверхностей целесообразно применять развёртки с винтовым зубом. Направление канавок делается противоположным направлению вращения для избежания самозатягивания и заедания развёртки.

Задний угол выполняют небольшой (5°…8°) для повышения стойкости развёртки. Режущую часть затачивают до остра, а на калибрующей делают цилиндрическую ленточку для повышения размерной стойкости и улучшения направления в работе.

Передний угол принимают равным нулю.

Зенкерами обрабатывают отверстия в литых или штампованных заготовках, а также предварительно просверленные отверстия. В отличие от сверл зенкеры снабжены тремя или четырьмя главными режущими кромками и не имеют поперечной кромки. Режущая часть выполняет основную работу резания. Калибрующая часть служит для направления зенкера в отверстии и обеспечивает необходимую точность и шероховатость поверхности. По виду обрабатываемых отверстий зенкеры делят на цилиндрические, конические и торцовые. Зенкеры бывают цельные с коническим хвостовиком и насадные.

Развертками окончательно обрабатывают отверстия. По форме обрабатываемого отверстия различают цилиндрические и конические развертки. Развертки имеют 6 – 12 главных режущих кромок, расположенных на режущей части с направляющим конусом. Калибрующая часть направляет развертку в отверстии и обеспечивает необходимую точность и шероховатость поверхности. По конструкции крепления развертки делят на хвостовые и насадные.

  1. Основные виды шлифования их преимущества и недостатки. Технологические возможности шлифования по шероховатости и точности. Формообразование при шлифовании. Основные типы шлифовальных станков и их назначение.

Шлифованием называют процессы обработки заготовок резанием режущим инструментом, рабочая часть которого содержит частицы абразивного материала. Такой режущий инструмент называют абразивным. Измельченный абразивный материал (абразивные зерна), твердость которого превышает твердость обрабатываемого материала и который способен в измельченном состоянии осуществлять обработку резанием, называют шлифовальным. Различают алмазные, эльборовые, электрокорундовые, карбидкремниевые и другие абразивные инструменты (шлифовальные круги). Абразивные зерна расположены в круге беспорядочно и удерживаются связующим материалом. Шлифовальные крути срезают стружки на очень больших скоростях - от 30 м/с и выше (порядка 125 м/с). Процесс резания каждым зерном осуществляется почти мгновенно. Обработанная поверхность представляет собой совокупность микроследов абразивных зерен и имеет малую шероховатость.

Абразивные зерна могут также оказывать на заготовку существенное силовое воздействие. Происходит поверхностное пластическое деформирование материала, искажение его кристаллической решетки. Деформирующая сила вызывает сдвиг одного слоя атомов относительно другого. Вследствие упругопластического деформирования материала обработанная поверхность упрочняется.

Тепловое и силовое воздействия на обработанную поверхность приводят к структурным превращениям, изменениям физико-механических свойств. Проводят с подачей смазки.

Шлифование применяют для чистовой и отделочной обработки деталей с высокой точностью. Для заготовок из закаленных сталей шлифование является одним из наиболее распространенных методов формообразования. С развитием малоотходной технологии доля обработки металлическим инструментом будет уменьшаться, а абразивным - увеличиваться.

3. ОСНОВНЫЕ СХЕМЫ ШЛИФОВАНИЯ Формы деталей современных машин представляют собой сочетание наружных и внутренних плоских, круговых цилиндрических и круговых конических поверхностей. Другие поверхности встречаются реже. В соответствии с формами деталей машин наиболее распространены схемы шлифования, приведенные на рис. 6.79.

Для всех технологических способов шлифовальной обработки главным движением резания является вращение круга. При плоском шлифовании возвратно-поступательное перемещение заготовки необходимо для обеспечения продольной подачи (рис. 6.79, а). Для обработки поверхности на всю ширину заготовка или круг должны иметь движение поперечной подачи. Это движение происходит прерывисто (периодически) при крайних положениях заготовки в конце продольного хода. Периодически происходит и движение подачи на глубину резания. Это перемещение осуществляется также в крайних положениях заготовки, но в конце поперечного хода.

При круглом шлифовании (рис. 6.79, б) движение продольной подачи обеспечивается возвратно-поступательным перемещением заготовки. Вращение заготовки является движением круговой подачи.

В автоматизированных шлифовальных станках цикл работы станка включает периодический вывод круга из зоны шлифования, его автоматическую правку и перемещение круга к изделию на величину снятого при правке слоя абразива.

АБРАЗИВНЫЕ ИНСТРУМЕНТЫ

Абразивные инструменты различают по геометрической форме и размерам, роду и сорту абразивного материала, зернистости или размерам абразивных зерен, связке или виду связующего вещества, твердости, структуре или строению круга.

Зерна абразивных инструментов представляют собой искусственные или природные минералы и кристаллы. Абразивные материалы отличаются высокой твердостью, которая определяется по минералогической шкале. Зерна абразивов разделяют по крупности на группы и номера. Основная характеристика номера зернистости - количество и крупность его основной фракции. Вещество или совокупность веществ, применяемых для закрепления зерен шлифовального материала и наполнителя в абразивном инструменте, называют связкой. Наиболее широко применяют инструменты, изготовленные на керамической, бакелитовой или вулканитовой связке.

Керамическую связку приготовляют из глины,' полевого шпата, кварца и других веществ путем их тонкого измельчения и смешения в определенных пропорциях. Бакелитовая связка состоит в основном из искусственной смолы - бакелита. Вулканитовая связка представляет собой искусственный каучук, подвергнутый вулканизации для превращения его в прочный, твердый эбонит. Под твердостью абразивного инструмента понимается способность связки сопротивляться вырыванию абразивных зерен с рабочей поверхности инструмента под действием внешних сил.

Для шлифования заготовок из твердых сплавов и высокотвердых материалов успешно применяют алмазные круги. Алмазный круг состоит из корпуса и алмазоносного слоя. Корпус изготовляют из алюминия, пластмасс или стали. Толщина алмазоносного слоя у большинства кругов составляет 1,5 ... 3 мм. Чаще всего для изготовления таких инструментов используют синтетические алмазы. Удельный вес их применения превышает 80 %. Созданы новые материалы, которые практически не требуют правки и сохраняют свои свойства при нагреве до 1200 °С.

На шлифовальные круги наносят обозначения, называемые маркировкой.

  1. Классификация способов окончательной обработки рабочих поверхностей деталей машин с использованием абразива и методами поверхностного пластического деформирования. Хонингование, суперфиниш, доводка (притирка) и полирование: назначение, инструменты, схема обработки.

Отделка объемно-криволинейных, фасонных поверхностей обычными методами вызывает большие технологические трудности. Метод абразивно-жидкостной отделки позволяет решить задачу сравнительно просто. На обрабатываемую поверхность, имеющую следы предшествующей обработки, подают струи антикоррозионной жидкости со взвешенными частицами абразивного порошка (рис. 6.92, а). Водно-абразивная суспензия перемещается под давлением с большой скоростью. Частицы абразива ударяются о поверхность заготовки и сглаживают микронеровности. Интенсивность съема обрабатываемого материала регулируется зернистостью порошка, давлением струи и углом р. Изменяя скорость полета и размер свободных абразивных зерен, можно увеличить степень пластической деформации и шероховатость поверхности.

В качестве абразива часто применяют электрокорунд. В суспензии содержится 30 ... 35 % абразива (по массе).

Наибольший съем металла получается при угле Р = 45°

ОБРАБОТКА ПЛАСТИЧЕСКИМ ДЕФОРМИРОВАНИЕМ

Методы обработки без снятия стружки все больше применяют для деталей в связи с ужесточением эксплуатационных характеристик машин: высокой производительности, быстроходности, прочности, точности и др. Такой обработке подвергают предварительно подготовленные поверхности.

Если формы заготовок приблизить к формам готовых деталей, то ответственные поверхности можно обрабатывать шлифованием и затем окончательно од ним из методов обработки без снятия стружки. Предоставляется возможность уменьшить количество отходов и упростить обработку.

.ХОНИНГОВАНИЕ

Хонингование применяют для получения поверхностей высокой точности и малой шероховатости, а также для создания специфического микропрофиля обработанной поверхности в виде сетки. Такой профиль необходим для удержания смазочного материала при работе машины (например, двигателя внутреннего сгорания) на поверхности ее деталей.

Поверхность неподвижной заготовки обрабатывают мелкозернистыми абразивными брусками, которые закрепляют в хонинговальной головке (хоне). Бруски вращаются и одновременно перемещаются возвратно-поступательно вдоль оси обрабатываемого цилиндрического отверстия

СУПЕРФИНИШ

Суперфинишем в основном уменьшают шероховатость поверхности, оставшуюся от предыдущей обработки. При этом изменяются глубина и вид микронеровностей, обрабатываемые поверхности получают сетчатый рельеф. Поверхность становится чрезвычайно гладкой, что обеспечивает более благоприятные условия взаимодействия трущихся поверхностей.

Поверхности обрабатывают абразивными брусками, устанавливаемыми в специальной головке. Для суперфиниша характерно колебательное движение брусков наряду с движением заготовки. Процесс резания происходит при давлении брусков (0,5 ... 3) 105 Па и в присутствии смазочного материала малой вязкости.

Процесс характеризуется сравнительно малыми скоростями главного движения резания (0,08 ... 0,2 м/с).

Важную роль играет смазочно-охлаждающая жидкость. Масляная пленка покрывает обрабатываемую поверхность, но наиболее крупные микровыступы (рис. 6.96, 6) прорывают ее и в первую очередь срезаются абразивом. Давление брусков на выступы оказывается большим. По мере дальнейшей обработки давление снижается, так как все большее число выступов прорывает масляную пленку.

При обработке сталей лучших результатов достигают при применении брусков из электрокорунда, при обработке чугуна и цветных металлов - из карбида кремния. В большинстве случаев применяют бруски на керамической или бакелитовой связках. Большое влияние на ход процесса оказывает твердость брусков.

Поверхности деталей машин, обработанные на металлорежущих станках, всегда имеют отклонения от правильных геометрических форм и заданных размеров.

Эти отклонения могут быть устранены притиркой (абразивной доводкой). Таким методом могут быть обеспечены шероховатость поверхности до Кг = 0,05 ... 0,01 мкм, отклонения размеров и формы обработанных поверхностей до 0,05 ... 0,3 мкм. Доводка может быть осуществлена вручную и механическим способом.

По сравнению с ручной доводкой механическая абразивная доводка позволяет повысить производительность в 2 ... 6 раз, и при этом обеспечивается стабильность выходных - эксплуатационных характеристик деталей агрегатов и машин (гидравлической, пневматической и топливной аппаратуры, зубчатых колес, шариков и колец подшипников качения и др.), выходных параметров кремниевых подложек, кварцевых кристаллических элементов, керамических опор гидроприборов и д . ПОЛИРОВАНИЕ ЗАГОТОВОК

Полированием уменьшают шероховатость поверхности. Этим методом получают зеркальный блеск на ответственных частях деталей (дорожки качения подшипников) либо на деталях, применяемых для декоративных целей (облицовочные части автомобиля). Для этого используют полировальные пасты или абразивные зерна, смешанные со смазочным материалом. Эти материалы наносят на быстро-вращающиеся эластичные (например, фетровые) круги или колеблющиеся щетки. Хорошие результаты дает полирование быстродвижущимися бесконечными абразивными лентами (шкурками).

  1. Способы окончательной обработки рабочих поверхностей деталей машин поверхностным пластическим деформированием: обкатывание, выглаживание, дорнрование, ударное раскатывание. Назначение способов, инструменты и схема обработки.

Методы обработки без снятия стружки все больше применяют для деталей в связи с ужесточением эксплуатационных характеристик машин: высокой производительности, быстроходности, прочности, точности и др. Такой обработке подвергают предварительно подготовленные поверхности.

Если формы заготовок приблизить к формам готовых деталей, то ответственные поверхности можно обрабатывать шлифованием и затем окончательно одним из методов обработки без снятия стружки. Предоставляется возможность уменьшить количество отходов и упростить обработку.

Методы обработки основаны на использовании пластических свойств металлов, т.е. способности металлических заготовок принимать остаточные деформации без нарушения целостности металла. Детали становятся менее чувствительными к усталостному разрушению, повышаются их коррозионная стойкость и износостойкость сопряжений, удаляются риски и микротрещины, оставшиеся от предшествующей обработки. В ходе обработки шаровидная форма кристаллитов поверхности металла может измениться, кристаллиты сплющиваются в направлении деформации, образуется упорядоченная структура волокнистого характера. Поверхность заготовки принимает требуемые формы и размеры в результате перераспределения элементарных объемов под воздействием инструмента. Исходный объем заготовки остается постоянным.

В зоне обработки не возникает высокая температура, поэтому в поверхностных слоях фазовые превращения не происходят.

Обработку без снятия стружки выполняют на многих металлорежущих станках и установках, используя специальные инструменты. Созданы также особые станки, на которых наряду с резанием заготовки обрабатывают пластическим деформированием. Методы чистовой обработки используют для всех металлов, способных пластически деформироваться, но наиболее эффективны они для металлов с твердостью до НВ 280.

ОБКАТЫВАНИЕ И РАСКАТЫВАНИЕ ПОВЕРХНОСТЕЙ

Обкатыванием и раскатыванием отделывают и упрочняют цилиндрические, конические, плоские и фасонные наружные и внутренние поверхности.

Сущность этих методов состоит в том, что в результате давления поверхностные слои металла, контактируя с инструментом высокой твердости, оказываются в состоянии всестороннего сжатия и пластически деформируются. Инструментом являются ролики и шарики, перемещающиеся относительно заготовки. Обкатывают, как правило, наружные поверхности, а раскатывают внутренние цилиндрические и фасонные поверхности. При обкатывании роликами основными параметрами режима упрочнения являются давление в зоне контакта с роликом, число его проходов, подача и скорость обкатывания. Глубину деформированного слоя определяет давление.

АЛМАЗНОЕ ВЫГЛАЖИВАНИЕ

Малой шероховатости поверхности и ее упрочнения можно достичь алмазным выглаживанием. Сущность этого метода состоит в том, что оставшиеся после обработки резанием неровности поверхности выглаживаются перемещающимся по ней прижатым алмазным инструментом. Алмаз, закрепленный в державке, не вращается, а скользит с весьма малым коэффициентом трения. Рабочая часть инструмента выполнена в виде полусферы, цилиндра или конуса. Чем тверже обрабатываемый материал, тем меньше радиус скругления рабочей части алмаза.

Преимущества алмазного выглаживания состоят в повышении эксплуатационных свойств обработанных поверхностей, снижении шероховатости поверхности, отсутствии переноса на обрабатываемую поверхность посторонних частиц, возможности обработки тонкостенных деталей и деталей сложной конфигурации, простоте конструкции выглаживателей.

Заготовки обрабатывают на станках токарной группы.

Силы прижатия алмаза к обрабатываемой поверхности сравнительно малы и колеблются в интервале 50 ... 300 Н. Процесс выглаживания ведут со смазыванием веретенным маслом.

Дорнование (дорнирование) – вид обработки заготовок без снятия стружки. Размеры поперечного сечения инструмента больше размеров поперечного сечения отверстия заготовки на величину натяга.

Виды дорнования

Дорнование подразделяют на поверхностное и объёмное. При поверхностном дорновании пластически деформируется поверхностный слой, при объёмном – пластическое деформирование происходит по всему поперечному сечению обрабатываемой детали. Поверхностное дорнование относят к методам поверхностного пластического деформирования (ППД), а объёмное дорнование к методам обработки металлов давлением (ОМД).

9.УПРОЧНЯЮЩАЯ ОБРАБОТКА ПОВЕРХНОСТНЫХ СЛОЕВ ДЕТАЛЕЙ

Упрочняющую обработку предпринимают для увеличения сопротивления усталости деталей. Методы упрочнения основаны на локальном воздействии инструмента на обрабатываемый материал. При этом возникают многочисленные зоны воздействия на весьма малых участках поверхности, в результате чего создаются очень большие местные давления. Многочисленные контакты с инструментом при-водят к упрочнению поверхностного слоя. В поверхностных слоях возникают существенные напряжения сжатия.

Прочность конструкционных материалов повышается благодаря воздействию нагрузок, создающих эффективные препятствия для движения несовершенств кристаллической решетки.

Распространено упрочнение нанесением ударов по поверхности заготовки шариками, роликами, различными бойками.

При статическом упрочнении на поверхность заготовки воздействуют вращающимися роликами в процессе обкатывания или раскатывания.

Распространено дробеструйное динамическое упрочнение. Готовые детали машин подвергают ударному действию потока дроби в специальных камерах, где дробинки с большой скоростью перемещаются под действием потока воздушной струи или центробежной силы.

Этот метод применяют для таких изделий, как рессорные листы, пружины, лопатки турбин, штоки, штампы.

Эффект деформационного упрочнения повышается при использовании импульсных нагрузок, в частности взрывной волны. При упрочении взрывом необходимы энергоноситель и среда, передающая давление на упрочняемую деталь. В качестве энергоносителя используют бризантные взрывчатые вещества, обеспечивающие как поверхностные, так и сквозные упрочнения деталей.

  1. Формирование деталей машин электрофизикохимическими методами. Назначение, преимущества и недостатки методов. Сущность электроэрозионных, электрохимических, ультразвуковых и лучевых методов.

Электрофизические и электрохимические (ЭФЭХ) методы обработки основаны на непосредственном воздействии различных видов энергии (электрической, хими­ческой и др.) на обрабатываемую заготовку. При обработке заготовок этими мето­дами отсутствует силовое воздействие инструмента на заготовку или оно на-столько мало, что практически не влияет на суммарную погрешность обработки. Эти методы позволяют изменять форму обрабатываемой поверхности заготовки и влиять на состояние поверхностного слоя. Так, в некоторых случаях наклеп обрабо­танной поверхности не образуется, дефектный слой незначителен, удаляются прижоги поверхности, полученные при шлифовании, повышаются коррозионные, прочностные и другие эксплуатационные характеристики поверхностей деталей.

При электроэрозионной обработке (ЭЭО) используют явление эрозии (разрушения) электродов из токопроводящих материалов при пропускании между ними импульсов электрического тока. Заготовку и инструмент, изготовленные из токопроводящих материалов, подключают к источнику тока -генератору импульсов (ГИ) и помещают в диэлектрическую жидкость.

Электрохимические методы обработки основаны на законах анодного растворе­ния металлов при электролизе. При прохождении электрического тока через элек­тролит на поверхности заготовки, включенной в электрическую цепь и являю­щейся анодом, происходят химические реакции, и поверхностный слой металла превращается в химическое соединение. Продукты электролиза переходят в раствор или удаляются механическим способом.

Производительность процессов зави­сит в основном от электрохимических свойств электролита, обрабатываемого токопроводящего материала и плотности тока.

Ултразвуковая обработка материалов -разновидность механической обработки -основана на разрушении обрабатываемого материала абразивными зернами под уда­рами инструмента, колеблющегося с ультразвуковой частотой. Источником энергии служат ультразвуковые генераторы тока с частотой 16 ... 30 кГц. Инструмент получает колебания от ультразвукового преоб­разователя с сердечником из магнито-стрикционного материала. Эффектом магнитострикции обладают никель, железо-никелевые сплавы (пермендюр), железо-алюминиевые сплавы (альфер), ферриты.

К лучевым методам формообразования поверхностей деталей машин относят электронно-лучевую и светолучевую (лазерную) обработку

Электронно-лучевая обработка основана на превращении кинетической энер­гии направленного пучка электронов в тепловую. Высокая плотность энергии сфокусированного электронного луча позволяет обрабатывать заготовки за счет нагрева, расплавления и испарения материала с узколокального участка.

Светолучевая (лазерная) обработка основана на тепловом воздействии свето­вого луча высокой энергии на поверхность обрабатываемой заготовки. Источником светового излучения служит лазер - опти­ческий квантовый генератор (ОКГ)

  1. Особенности устройства металлообрабатывающих станков с ЧПУ. Назначение и основные преимущества станков.

Металлорежущие станки с системами ЧПУ применяют как для выполнения простых операций, так и для обработки сложных фасонных деталей. Системы ЧПУ обеспечивают высокий уровень автоматизации станков, включая автоматическую смену режущих инструментов и заготовок, изменение режимов резания, получение размеров поверхностей деталей. Станки с ЧПУ имеют большую производительность, чем универсальные станки. Станки с ЧПУ, изготовляемые на базе серийных, имеют коробку скоростей с передвижными зубчатыми блоками или оснащены бесступенчатым приводом главного движения. Механизм подачи станка обеспечивает перемещение заготовки, установленной на столе, в двух взаимно перпендикулярных направлениях – продольном и поперечном. Шпиндель станка вместе с ползуном перемещается в вертикальной плоскости. Эти три движения осуществляются от трех исполнительных механизмов. Каждый из них состоит из электродвигателя (М2 М3 М4), который управляет гидродвигателем (Г2 Г3 Г4). Гидродвигатели приводят в движение рабочие органы станка (стол и ползун) через зубчатые колеса и шариковые винтовые пары (2,3,4). Каждому импульсу, поступающему от системы ЧПУ, соответствует перемещение ползуна со шпинделем или стола на 0.01 мм. Консоль станка со столом и салазками имеет установочное вертикальное перемещение от гидродвигателя Г1 через пару конических колес 18/72 и винтовую пару 1.

Программа работы станка задается с помощью чисел в закодированном виде на программоносителе – перфорированной бумажной ленте.