
- •1. Пищеварение и его организация.
- •2.Пищеварительные и непищеварительные функции желудочно-кишечного тракта.
- •3.Типы пищеварения.
- •4.Конвейерный принцип организации пищеварения.
- •5.Пищеварение в ротовой полости.
- •6.Жевание. Фазы и функции жевания. Роль зубов в механической обработке пищи.
- •7.Блок-схема рефлекса жевания.(Регуляция)
- •8.Методы исследования жевательного аппарата.
- •9.Слюноотделение. Функции слюны.
- •10.Регуляция слюноотделения. Морфофункциональная организация рефлекса слюноотделения.
- •11.Глотание. Фазы глотания. Продвижение пищевого комка из ротовой полости в желудок.
- •12.Пищеварение в желудке.
- •13.Секреторная функция желудка. Состав и функции желудочного сока.
- •14.Регуляция секреции желудочного сока
- •15.Фазы секреции желудочного сока, экспериментальные методы исследования.
- •16. Моторная деятельность желудка.
- •17. Виды моторики желудка, их характеристика.
- •18.Регуляция моторики желудка.
- •19.Регуляция секреции поджелудочной железы.
- •20.Фазы секреции поджелудочной железы. Влияние пищевых режимов на секрецию.
- •21.Желчеобразование, его регуляция. Состав и функции желчи.
- •22.Желчевыделение, его регуляция.
- •23.Пищеварение в тонкой кишке. Состав и функции сока тонкой кишки.
- •24. Регуляция кишечной секреции.
- •25. Полостной и пристеночный гидролиз питательных веществ.
- •26.Моторная деятельность тонкой кишки и ее регуляция.
- •27.Всасывание воды и электролитов в тонкой кишке.
- •28.Всасывание продуктов гидролиза белков, жиров и углеводов в кишечнике.
- •30.Функции толстой кишки и её роль в пищеварении
- •31.Непроизвольная и произвольная регуляция акта дефекации.
- •32.Роль микрофлоры кишечника в пищеварительных и непищеварительных функциях желудочно-кишечного тракта.
- •33. Функции печени.
- •35.Основной обмен. Факторы, определяющие величину основного обмена. Правило поверхности тела, относительность его применения.
- •36.Специфическое динамическое действие пищи.
- •37.Рабочая прибавка. Величины энергетического обмена в пяти основных профессиональных группах людей.
- •44. Характеристика теплоотдачи (физическая терморегуляция).
- •45.Центр терморегуляции. Регуляция изотермии.
- •46. Питание. Физиологические основы формирования чувства голода и насыщения.
- •47.Функции, состав и пищевая ценность компонентов пищевого рациона.
- •48.Теоретические основы питания. Принципы организации рационального питания.
- •49. Нормы питания.
- •50.Клиническое применение искусственного питания, его виды.
- •51.Общая характеристика органов выделительной системы.
- •52. Структурно-функциональная единица почек. Строение нефронов. Виды нефронов.
- •53. Кровоснабжения почек и нефронов. Юкстагломерулярный аппарат.
- •54. Процесс мочеобразования.
- •55. Клубочковая фильтрация. Фильтрирующая мембрана (фильтрационный барьер). Механизм образования и состав первичной мочи.
- •56. Измерение скорости клубочковой фильтрации.
- •57. Канальцевая реабсорбция. Локализация реабсорбции веществ в почечных канальцах. Пороговые и беспороговые вещества.
- •58. Механизмы канальцевой реабсорбции.
- •59. Определение величины реабсорбции в канальцах почки.
- •60. Канальцевая секреция. Локализация секреции веществ в почечных канальцах.
- •61. Механизмы канальцевой секреции.
- •62. Определение величины секреции в каналцах почек.
- •63. Осмотическое разведение и концентрирование мочи. Функционирование поворотно-противоточной множительной системы.
- •64. Мочевыведение, мочеиспускание. Количество, состав и свойства дефинитивной мочи.
- •65. Регуляция скорости клубочковой фильтрации.
- •66.Регуляция канальцевой реабсорбции.
- •67. Регуляция канальцевой секреции.
- •68. Гомеостатические функции почек:
- •69.Роль почек в осморегуляции.Роль почек в волюморегуляции.
- •70. Роль почек в регуляции ионного состава крови. Роль почек в регуляции кислотно-основного состояния .
- •71. Инкреторная функция почек. Роль почек в регуляции эритропоэза и гемостаза.
- •72. Роль почек в регуляции артериального давления .
- •73. Метаболическая функция почек. Экскреторная функция почек.
- •74. Непроизвольная и произвольная регуляция мочеиспускания.
- •1. Известно, что когда высшие животные и человек голодны, у них возникает слюноотделение при виде и запахе пищи, обсуждении процесса ее приготовления, т.Е. Раньше, чем пища попадет в рот.
- •2. При дегустации разных пищевых продуктов дегустатор предварительно ополаскивает рот дистиллированной водой, а затем тщательно пережевывает пищу.
- •3.Студент находится на экзамене. Он сильно волнуется. Во рту у него пересохло.
- •23. У животных в условиях хронического эксперимента была сформирована гипофункция коры надпочечников, в частности, их клубочковой зоны.
- •25. При обследовании пациента врач обнаружил у него повышенное артериальное давление (ад). После проведения дополнительного исследования у пациента была выявлена недостаточность кровоснабжения почек.
54. Процесс мочеобразования.
Образование конечной мочи является результатом трех последовательных процессов.
В почечных клубочках происходит начальный этап мочеобразования — клубочковая, или гломерулярная, фильтрация, ультрафильтрация безбелковой жидкости из плазмы крови в капсулу почечного клубочка, в результате чего образуется первичная моча.
Канальцевая реабсорбция — процесс обратного всасывания профильтровавшихся веществ и воды.
Секреция. Клетки некоторых отделов канальца переносят из внеклеточной жидкости в просвет нефрона (секретируют) ряд органических и неорганических веществ либо выделяют в просвет канальца молекулы, синтезированные в клетке канальца.
Скорость гломерулярной фильтрации, реабсорбции и секреции регулируется в зависимости от состояния организма при участии гормонов, эфферентных нервов или локально образующихся биологически активных веществ — аутакоидов.
55. Клубочковая фильтрация. Фильтрирующая мембрана (фильтрационный барьер). Механизм образования и состав первичной мочи.
Мысль о фильтрации воды и растворенных веществ как первом этапе мочеобразования была высказана в 1842 г. немецким физиологом К. Людвигом. В 20-х годах XX столетия американскому физиологу А. Ричардсу в прямом эксперименте удалось подтвердить это предположение — с помощью микроманипулятора пунктировать микропипеткой клубочковую капсулу и извлечь из нее жидкость, действительно оказавшуюся ультрафильтратом плазмы крови.
Ультрафильтрация воды и низкомолекулярных компонентов из плазмы крови происходит через клубочковый фильтр. Этот фильтрационный барьер почти непроницаем для высокомолекулярных веществ. Процесс ультрафильтрации обусловлен разностью между гидростатическим давлением крови, гидростатическим давлением в капсуле клубочка и онкотическим давлением белков плазмы крови. Общая поверхность капилляров клубочка больше общей поверхности тела человека и достигает 1,5 м2 на 100 г массы почки.
Фильтрующая мембрана (фильтрационный барьер), через которую проходит жидкость из просвета капилляра в полость капсулы клубочка, состоит из трех слоев: эндотелиальных клеток капилляров, базальной мембраны и эпителиальных клеток висцерального (внутреннего) листка капсулы — подоцитов (рис. 12.4).
Клетки эндотелия, кроме области ядра, очень истончены, толщина цитоплазмы боковых частей клетки менее 50 нм; в цитоплазме имеются круглые или овальные отверстия (поры) размером 50—100 нм, которые занимают до 30 % поверхности клетки. При нормальном кровотоке наиболее крупные белковые молекулы образуют барьерный слой на поверхности пор эндотелия и затрудняют движение через них альбуминов, ограничивая тем самым прохождение форменных элементов крови и белков через эндотелий. Другие компоненты плазмы крови и вода могут свободно достигать базальной мембраны.
Базальная мембрана является одной из важнейших составных частей фильтрующей мембраны клубочка. У человека толщина базальной мембраны 250—400 нм. Эта мембрана состоит из трех слоев — центрального и двух периферических. Поры в базальной мембране препятствуют прохождению молекул диаметром больше 6 нм.
Наконец, важную роль в определении размера фильтруемых веществ играют щелевые мембраны между «ножками» подоцитов. Эти эпителиальные клетки обращены в просвет капсулы почечного клубочка и имеют отростки — «ножки», которыми прикрепляются к базальной мембране. Базальная мембрана и щелевые мембраны между этими «ножками» ограничивают фильтрацию веществ, диаметр молекул которых больше 6,4 нм (т. е. не проходят вещества, радиус молекулы которых превышает 3,2 нм). Поэтому в просвет нефрона свободно проникает инулин (радиус молекулы 1,48 нм, молекулярная масса около 5200), может фильтроваться лишь 22 % яичного альбумина (радиус молекулы 2,85 нм, молекулярная масса 43500), 3 % гемоглобина (радиус молекулы 3,25 нм, молекулярная масса 68 000 и меньше 1 % сывороточного альбумина (радиус молекулы 3,55 нм, молекулярная масса 69 000).
Прохождению белков через клубочковый фильтр препятствуют отрицательно заряженные молекулы — полианионы, входящие в состав вещества базальной мембраны, и сиалогликопротеиды в выстилке, лежащей на поверхности подоцитов и между их «ножками». Ограничение для фильтрации белков, имеющих отрицательный заряд, обусловлено размером пор клубочкового фильтра и их электронегативностью. Таким образом, состав клубочкового фильтрата зависит от свойств эпителиального барьера и базальной мембраны. Естественно, размер и свойства пор фильтрационного барьера вариабельны, поэтому в обычных условиях в ультрафильтрате обнаруживаются лишь следы белковых фракций, характерных для плазмы крови. Прохождение достаточно крупных молекул через поры зависит не только от их размера, но и конфигурации молекулы, ее пространственного соответствия форме поры.
Уровень клубочковой фильтрации зависит от разности между гидростатическим давлением крови (около 44—47 мм рт. ст. в капиллярах клубочка), онкотическим давлением белков плазмы крови (около 25 мм рт. ст.) и гидростатическим давлением в капсуле клубочка (около 10 мм рт. ст.). Эффективное фильтрационное давление, определяющее скорость клубочковой фильтрации, составляет 10—15 мм рт. ст. [47 мм рт. ст. — (25 мм рт. ст. + -)- 10 мм рт. ст.) = 12 мм рт. ст.]. Фильтрация происходит только в том случае, если давление крови в капиллярах клубочков превы
шает сумму онкотического давления белков в плазме и давления жидкости в капсуле клубочка.
Ультрафильтрат, извлеченный микропипеткой из полости клубочка, практически не содержит белков, но подобен плазме по общей концентрации осмотически активных веществ, глюкозы, мочевины, мочевой кислоты, креатинина и др. Небольшое различие концентрации ряда ионов по обеим сторонам клубочковой мембраны обусловлено равновесием Доннана — наличием в плазме крови анионов, не диффундирующих через мембрану и удерживающих часть катионов. Следовательно, для расчета количества фильтруемых веществ в клубочках необходимо учитывать, какая их часть может проходить из плазмы в просвет нефрона через гломерулярный фильтр.
Для внесения поправки на связывание некоторых ионов белками плазмы крови вводится понятие об ультрафильтруемой фракции (f) — той части вещества от общей его концентрации в плазме
крови, которая не связана с белком и свободно проходит через клубочковый фильтр. Ультрафильтруемая фракция для кальция составляет 0,6, для магния — 0,75. Эти величины свидетельствуют о том, что около 40 % кальция плазмы связано с белком и не фильтруется в клубочках. Однако в профильтровавшейся жидкости кальций (и магний) также состоит из двух фракций: одна из них — ионизированный кальций (магний), другая — кальций (магний), связанный с низкомолекулярными соединениями, проходящими через клубочковый фильтр.
В ультрафильтрате обнаруживаются следы белка. Различие размера пор в клубочках даже у здорового человека обусловливает проникновение небольшого количества особенно измененных белков; из нормальной мочи удалось выделить в следовых количествах белковые фракции, характерные для плазмы крови.
Моча образуется в почках из крови, которой почки хорошо снабжаются.Образование мочи проходит в два этапа — фильтрации и обратного всасывания (реабсорбции).
На первом этапе плазма крови фильтруется через капилляры мальпигиева клубочка в полость капсулы нефрона.
За счёт высокого давления крови в капиллярах клубочков вода и небольшие молекулы различных веществ, содержащиеся в плазме крови, поступают в щелевидное пространство капсулы, от которой начинается почечный каналец. Так образуется первичная моча, близкая по составу к плазме крови (отличающаяся от плазмы крови отсутствием белков) и содержащая мочевину, мочевую кислоту, аминокислоты, глюкозу, витамины.