Добавил:
AnonimusPro
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз:
Предмет:
Файл:Презентация механика Лекция 5.ppt
X
- •Физические основы механики
- •Механические
- •Лекция № 5
- •Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени.
- •Примеры колебательных процессов
- •Примеры колебательных процессов
- •Равновесия устойчивое, неустойчивое и
- •График потенциальной энергии имеет вид:
- •Колебания могут происходить только около положения устойчивого равновесия, гдеFx 0 , аU min
- •В результате потенциальная энергия принимает вид:
- •Модель гармонического осциллятора
- •Тогда зависимость координаты x от времени описываются уравнением следующего вида:
- •pendulum.avi
- •График этой функции для случая x Acos( 0t) представлен на рисунке
- •Определенные состояния системы, совершающей гармонические колебания, повторяются через промежуток
- •Найдем дифференциальное уравнение, которое
- •Скорость , ускорение.
- •Рассмотрим графики x , x , ax
- •Ускорение равно нулю при прохождении телом положения равновесия и достигает наибольшего значения, равного
- •Основное уравнение динамики гармонических колебаний
- •Сравнивая , видим, что ω02
- •Круговая частота колебаний ω0 2Tπ , но так
- •Энергия гармонических колебаний
- •Сложив выражения для U и K, получим формулу для
- •Из графиков видно, что
- •Свободные незатухающие колебания
- •Решение этого уравнения – гармонические колебания
- •Математический маятник –
- •Так как рассматриваются только малые отклонения
- •СЛОЖЕНИЕ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ ОДНОГО НАПРАВЛЕНИЯ И ОДИНАКОВОЙ
- •Метод векторных диаграмм
- •Проекция этого вектора на ось Ox описывает гармоничес-
- •По правилу сложения векторов найдем суммарную амплитуду, результирующего колебания (теорема косинусов):
- •Рассмотрим несколько простых случаев
- •2. Разность фаз равна нечетному числу π , то есть
- •Свободные затухающие механические
- •Второй закон Ньютона для затухающих прямолинейных колебаний вдоль оси x :
- •Дифференциальное уравнение свободных затухающих колебаний:
- •Затухание нарушает периодичность колебаний, поэтому
- •Зависимость
- •Основные параметры (характеристики)
- •Число колебаний Ne - число колебаний, по истечении
- •Добротность Q является важнейшей характеристикой колебательной системы, которая при малых значениях коэффициента затухания
- •При малом затухании:
- •Физический смысл добротности:
- •Вынужденные колебания гармонического
- •Дифференциальное уравнение вынужденных колебаний под действием гармонической силы
- •Решение уравнения равно сумме общего решения однородного уравнения и частного решения неоднородного уравнения:
- •Амплитуда и фаза вынужденных
- •При малом затухании: 2 02 ,
- •Зависимость сдвига фазы вынужденных колебаний относительно вынуждающей силы для различных
- •ЛЕКЦИЯ ЗАКОНЧЕНА!
Соседние файлы в предмете Физика