Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ИЭ / 2 семестр / Расписанные билеты.docx
Скачиваний:
141
Добавлен:
27.08.2020
Размер:
6.3 Mб
Скачать

45. Вектор Пойнтинга.

Перенос энергии электромагнитной волной определяют при помощи вектора, который называют вектором потока энергии. Этот вектор обозначим как S (встречается обозначение P). Он показывает количество энергии, протекающее в волне за единицу времени через единицу площади поперечного сечения волны. Для электромагнитных волн данный вектор был введен Пойнтингом.

Введем вектор dW=⃗Hd⃗B+⃗Ed⃗D{\displaystyle dw = \vec{H}d\vec{B} + \vec{E}d\vec{D}} - приращение плотности электромагнитной энергии, где сама величина w{\displaystyle w} определяется интегралом:

W=∫(⃗Hd⃗B+⃗Ed⃗D){\displaystyle w = \int (\vec{H}d\vec{B} + \vec{E}d\vec{D})}

Объемная плотность энергии w электромагнитной волны складывается из объемных плотностей электрического и магнитного полей:

{\displaystyle w = w_E + w_H = \frac{\varepsilon\varepsilon_0E^2}{2} + \frac{\mu\mu_0H^2}{2} }

Учитывая  {\displaystyle \sqrt{\varepsilon\varepsilon_0}E = \sqrt{\mu\mu_0}H}, получим, что плотность энергии электрического и магнитного полей в каждый момент времени одинакова, т.е. wE=wH{\displaystyle w_E = w_H} . Поэтому

Умножив плотность энергии W{\displaystyle w} на скорость u{\displaystyle u} распространения волны в среде, получим модуль плотности потока энергии – поток энергии через единичную площадку, перпендикулярную направлению распространения волны в единицу времени: S=Wu=EH

46. Волновая оптика. Шкала электромагнитных волн. Временная и пространственная когерентность.

Волновая оптика – раздел физики, в котором рассматриваются оптические явления, в которых проявляется волновая природа света (явления интерференции, дифракции, поляризации и дисперсии).

Шкала ЭМВ:

  1. Радиоволны

  2. Инфракрасные лучи

  3. Видимые лучи

  4. Ультрафиолетовые лучи

  5. Рентгеновские лучи

  6. Гамма-лучи

Под когерентностью понимают согласованное протекание волновых или колебательных процессов. Различают временную и пространственную когерентность. Под временной когерентностью понимают степень согласованности колебаний в некоторой точке пространства с течением времени. Эта согласованность нарушается с течением времени для излучения обычных источников из-за того, что световая волна представляет собой суперпозицию огромного числа электромагнитных волн. Пока излучают одни и те же атомы, фаза суммарной волны остается постоянной. Цуг - это последовательность “горбов” и “впадин” электромагнитного излучения, испускаемого атомом в возбужденном состоянии. Однако с течением времени одни атомы прекращают излучение и соответствующие им цуги исчезают. Другие атомы, наоборот, начинают излучать, и возникают новые цуги, фазы которых никак не связаны с фазами предшествующих. В момент исчезновения цуга или возникновения нового фаза суммарной волны испытывает малые скачкообразные изменения, которые носят случайный характер. Число таких случайных скачков фазы за некоторый промежуток времени пропорционально его длительности. Временем когерентности tk. будем называть время, в течение которого изменение фазы волны в рассматриваемой точке пространства, вследствие последовательности случайных малых ее изменений, может достигать значения π.

Используя данное определение время когерентности можно оценить из условия

,

т.е. ,

где Δ- ширина спектра по шкале частот.

Очевидно, что tk равно длительности цуга τ. Если запаздывание Δt одной из двух волн, полученных от одного источника, в данной точке пространства, превысит τ, то в этой точке будут накладываться разные цуги (т. е. сопряженные цуги не перекрываются) и, следовательно, накладываемые волны окажутся некогерентными.

Расстояние, на которое перемещается волна за время когерентности, называется длиной когерентности или длиной цуга lk. Очевидно, что для вакуума

Так как , то, дифференцируя эту формулу, получим. Следовательно, справедливо приближенное выражение. Поэтому имеем:

,

.

Пространственная когерентность — когерентность колебаний, которые совершаются в один и тот же момент времени в разных точках плоскости, перпендикулярной направлению распространения волны.

Понятие пространственной когерентности введено для объяснения явления интерференции (на экране) от двух разных источников (от двух точек удлиненного источника, от двух точек круглого источника и т. п.).

Для реальных источников, имеющих конечную протяженность, эта согласованность нарушается вследствие следующих причин. Во-первых, колебания, созданные разными точками протяженного источника света в некоторой точке пространства складываются не в одной фазе из-за разности расстояний от них до данной точки. Во-вторых, две точки протяженного источника излучают тем менее согласованно (т.е. случайное изменение фазы между ними оказывается большим), чем больше расстояние между ними (даже в том случае, если расстояние от них до точки пространства, где производиться сложение колебаний, одинаково). Тем не менее, для плоскости, перпендикулярной направлению распространения света, можно указать размер области, называемый длиной или радиусом пространственной когерентности, колебания в пределах которой можно считать когерентными. Если в пределах этой области поместить две щели, они будут излучать когерентные волны и будет наблюдаться интерференционная картина.

Длиной или радиусом пространственной когерентности условились называть расстояние вдоль волновой поверхности (в направлении, перпендикулярном направлению распространения волны), на котором изменение фазы вследствие случайных малых ее изменений, достигает значения π.

Можно показать, что длина пространственной когерентности для источника света в виде светящегося диска приблизительно равна

lп,

где - угловой размер источника.

Отсюда видно, что чем меньше угловой размер источника, тем больше длина пространственной когерентности, и для точечного источника света она равна бесконечности. Т.е. точечный источник является полностью пространственно когерентным.

Соседние файлы в папке 2 семестр