- •Билеты по физике
- •1.Закон Кулона. Напряженность эп. Принцип суперпозиции.
- •2.Поток вектора напряженности эп. Теорема Гаусса.
- •9. Электрическое поле в веществе.
- •10. Поляризация диэлектриков.
- •13. Условия для электростатического поля на границе раздела двух диэлектриков.
- •13. Условия для электростатического поля на границе раздела двух диэлектриков
- •Другие варианты ответа на вопрос:
- •14. Сегнетоэлектрики
- •15. Проводники в электрическом поле поверхностная плотность индуцированных зарядов
- •16. Электрическая емкость уединенного проводника. Конденсатор. (я не знаю что из того нужно, поэтому скопировала все на всякий случай)
- •17. Энергия электростатического поля
- •Интегральное представление энергии непрерывного распределения зарядов, cравнение со случаем энергии системы точечных зарядов
- •Электрическая энергия заряженных уединенного проводника и конденсатора
- •20. Электрический ток и его характеристики. Уравнение неразрывности.
- •21.Основы классической электронной теории электропроводности металлов
- •22. Закон Ома в дифференциальной форме
- •23.Электропроводность газов. Границы применимости закона Ома.
- •24. Магнитная индукция. Сила Лоренца.
- •25. Закон Био-Савара-Лапласса.
- •26. Магнитное поле прямого тока
- •27. Магнитное поле кругового тока
- •28. Теорема о циркуляции вектора b
- •29. Сила Лоренца
- •31. Сила взаимодействия токов
- •32. Магнитное поле в веществе. Магнетон Бора.
- •33 Напряженность магнитного поля. Вектор намагниченности:
- •34 Типы магнетиков. Диамагнетизм. Парамагнетизм
- •35. Ферромагнетизм.
- •36. Теорема о циркуляции для магнитного поля в веществе
- •39. Энергия магнитного поля.
- •Виды поляризации.
- •Энергия электромагнитных волн
- •45. Вектор Пойнтинга.
- •47. Интерференция света от двух точечных источников.
- •Спираль Френеля
- •51.Дифракция на щели
- •52.Дифракционная решетка
- •53.Голография.
- •54.Поляризация света.Закон Брюстера.
- •55. Рубиновый лазер
- •60. Уравнение Шредингера. Свойства волновой функции.
- •Другой вариант ответа:
23.Электропроводность газов. Границы применимости закона Ома.
Газы в нормальном состоянии являются хорошими диэлектриками (например, чистый, неионизированный воздух). Однако, если газы содержат в себе влагу с примесью органических и неорганических частиц и при этом они ионизированы, то они проводят электричество. Ионизация газа, т.е. расщепление его нейтральных молекул на положительные и отрицательные ионы, которая происходит под действием внешних факторов, называется несамостоятельной или несобственной. Внешними факторами могут быть: рентгеновские лучи, ультрафиолетовые лучи, космические излучения, а также сильный термический разогрев газа. Если к газу приложить сильное электрическое поле с большой напряженностью, под действием кинетической энергии нейтральные молекулы будут интенсивно распадаться на положительные и отрицательные ионы, что приводит к появлению самостоятельной или собственной ионизации.
Изменение величины тока в зависимости от напряжения, приложенного к объему газа, выражается графически в виде кривой, называемой вольтамперной характеристикой.

Uн - напряжение насыщения;
Uи – напряжение ионизации;
Uпр– напряжение пробоя.
На первом участке ампер-вольтной характеристики газа до Uн выполняется закон Ома, т.е. зависимость линейна, что объясняется ионизацией нейтральных молекул газа на положительные и отрицательные ионы и их частичной рекомбинацией (частичным соединением в нейтральные молекулы).
На втором участке при увеличении напряжения до значения Uи ток не изменяется, что обусловлено выносом разноименных ионов на электроды и уменьшением их концентрации в межэлектродном промежутке.
Участки I и II ампер-вольтной характеристики газа соответствуют несамостоятельной ионизации.
С дальнейшим же повышением напряжения (область III) скорость заряженных частиц резко возрастает, вследствие чего происходят частые соударения их с нейтральными частицами газа. При этих упругих соударениях электроны и ионы передают часть накопленной ими энергии нейтральным частицам газа. В результате электроны отделяются от своих атомов. При этом образуются новые электрически заряженные частицы: свободные электроны и ионы.
Ввиду того что летящие заряженные частицы соударяются с атомами и молекулами газа очень часто, образование новых электрически заряженных частиц происходит весьма интенсивно. Этот процесс называется ударной ионизацией газа.
После
пробоя газообразного диэлектрика
(U
Uпр)
теоретически напряжение падает до
нулевого значения, а ток бесконечно
возрастает (режим короткого замыкания
в газообразном диэлектрике).
Границы применимости закона Ома.
Смысл закона Ома заключается в том, что средняя скорость направленного движения носителей тока пропорциональна напряжённости электрического поля, то есть пропорциональна действующей на частицы силе.
Закон Ома выполняется для металлов, полупроводников, электролитов, то есть для тех веществ, в которых носители тока испытывают большое число соударений. При этом данный закон выполняется при не слишком сильных полях, когда роль соударений велика.
Закон Ома не выполняется при токах в вакууме (например, в кинескопах, радиолампах, ускорителях частиц), так как в этих случаях носители тока практически не испытывают столкновений.
Закон Ома очень ограниченно выполняется в плазме, так как в плазме обычно непостоянно число носителей тока.
Если бы закон Ома выполнялся во всех случаях прохождения тока через вещество, то электроника, построенная на нелинейной зависимости тока от напряжения, перестала бы существовать.
